Post-CMOS-Compatible Aluminum Nitride Resonant MEMS Accelerometers

This paper describes the development of aluminum nitride (AlN) resonant accelerometers that can be integrated directly over foundry CMOS circuitry. Acceleration is measured by a change in resonant frequency of AlN double-ended tuning-fork (DETF) resonators. The DETF resonators and an attached proof...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 18; no. 3; pp. 671 - 678
Main Authors Olsson, Roy H., Wojciechowski, Kenneth E., Baker, Michael S., Tuck, Melanie R., Fleming, James G.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper describes the development of aluminum nitride (AlN) resonant accelerometers that can be integrated directly over foundry CMOS circuitry. Acceleration is measured by a change in resonant frequency of AlN double-ended tuning-fork (DETF) resonators. The DETF resonators and an attached proof mass are composed of a 1-mum-thick piezoelectric AlN layer. Utilizing piezoelectric coupling for the resonator drive and sense, DETFs at 890 kHz have been realized with quality factors ( Q ) of 5090 and a maximum power handling of 1 muW. The linear drive of the piezoelectric coupling reduces upconversion of 1/ f amplifier noise into 1/ f 3 phase noise close to the oscillator carrier. This results in lower oscillator phase noise, -96 dBc/Hz at 100-Hz offset from the carrier, and improved sensor resolution when the DETF resonators are oscillated by the readout electronics. Attached to a 110-ng proof mass, the accelerometer microsystem has a measured sensitivity of 3.4 Hz/G and a resolution of 0.9 mG/radicHz from 10 to 200 Hz, where the accelerometer bandwidth is limited by the measurement setup. Theoretical calculations predict an upper limit on the accelerometer bandwidth of 1.4 kHz.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2009.2020374