Genetic influences on electrical seizure threshold
C57BL/6J (B6) and DBA/2J (D2) mice have been characterized previously as seizure-resistant and seizure-sensitive, respectively, a distinction based primarily upon a differential response to the convulsant effects of various drugs. In the present study, electroconvulsive shock (ECS) was used to asses...
Saved in:
Published in | Brain research Vol. 813; no. 1; pp. 207 - 210 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier B.V
30.11.1998
Amsterdam Elsevier New York, NY |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | C57BL/6J (B6) and DBA/2J (D2) mice have been characterized previously as seizure-resistant and seizure-sensitive, respectively, a distinction based primarily upon a differential response to the convulsant effects of various drugs. In the present study, electroconvulsive shock (ECS) was used to assess maximal electroshock threshold (MET) in B6, D2 and hybrid mice. Results revealed that D2 mice have a significantly lower MET compared to B6 mice. There was also a significant gender effect for B6 and F2 mice with females exhibiting a lower MET compared to males. METs for F1 and F2 intercross mice were intermediate between the two parental strains. The difference in variance between F2 and F1 generation mice indicated that about three-quarters of the total variance is due to genetic influence. Taken together, results of this study suggest that the large difference in MET between B6 and D2 mice is a highly heritable trait which may yield to genetic dissection through use of quantitative trait locus mapping. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/S0006-8993(98)01013-0 |