Classification and control of the origin of photoluminescence from Si nanocrystals

Silicon dominates the electronics industry, but its poor optical properties mean that III–V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons (do they ari...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 3; no. 3; pp. 174 - 178
Main Authors Godefroo, S., Hayne, M., Jivanescu, M., Stesmans, A., Zacharias, M., Lebedev, O. I., Van Tendeloo, G., Moshchalkov, V. V.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2008
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silicon dominates the electronics industry, but its poor optical properties mean that III–V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons (do they arise from highly localized defect states or quantum confinement effects?) has been the subject of intense debate ever since. Attention has subsequently shifted from porous Si to Si nanocrystals, but the same fundamental question about the origin of the photoluminescence has remained. Here we show, based on measurements in high magnetic fields, that defects are the dominant source of light from Si nanocrystals. Moreover, we show that it is possible to control the origin of the photoluminescence in a single sample: passivation with hydrogen removes the defects, resulting in photoluminescence from quantum-confined states, but subsequent ultraviolet illumination reintroduces the defects, making them the origin of the light again.
AbstractList Silicon dominates the electronics industry, but its poor optical properties mean that III–V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons (do they arise from highly localized defect states or quantum confinement effects?) has been the subject of intense debate ever since. Attention has subsequently shifted from porous Si to Si nanocrystals, but the same fundamental question about the origin of the photoluminescence has remained. Here we show, based on measurements in high magnetic fields, that defects are the dominant source of light from Si nanocrystals. Moreover, we show that it is possible to control the origin of the photoluminescence in a single sample: passivation with hydrogen removes the defects, resulting in photoluminescence from quantum-confined states, but subsequent ultraviolet illumination reintroduces the defects, making them the origin of the light again.
Silicon dominates the electronics industry, but its poor optical properties mean that III-V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons (do they arise from highly localized defect states or quantum confinement effects?) has been the subject of intense debate ever since. Attention has subsequently shifted from porous Si to Si nanocrystals, but the same fundamental question about the origin of the photoluminescence has remained. Here we show, based on measurements in high magnetic fields, that defects are the dominant source of light from Si nanocrystals. Moreover, we show that it is possible to control the origin of the photoluminescence in a single sample: passivation with hydrogen removes the defects, resulting in photoluminescence from quantum-confined states, but subsequent ultraviolet illumination reintroduces the defects, making them the origin of the light again.Silicon dominates the electronics industry, but its poor optical properties mean that III-V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons (do they arise from highly localized defect states or quantum confinement effects?) has been the subject of intense debate ever since. Attention has subsequently shifted from porous Si to Si nanocrystals, but the same fundamental question about the origin of the photoluminescence has remained. Here we show, based on measurements in high magnetic fields, that defects are the dominant source of light from Si nanocrystals. Moreover, we show that it is possible to control the origin of the photoluminescence in a single sample: passivation with hydrogen removes the defects, resulting in photoluminescence from quantum-confined states, but subsequent ultraviolet illumination reintroduces the defects, making them the origin of the light again.
Author Hayne, M.
Jivanescu, M.
Stesmans, A.
Lebedev, O. I.
Godefroo, S.
Van Tendeloo, G.
Moshchalkov, V. V.
Zacharias, M.
Author_xml – sequence: 1
  givenname: S.
  surname: Godefroo
  fullname: Godefroo, S.
  organization: INPAC-Institute for Nanoscale Physics and Chemistry, Pulsed Field Group, K.U.Leuven
– sequence: 2
  givenname: M.
  surname: Hayne
  fullname: Hayne, M.
  email: m.hayne@lancaster.ac.uk
  organization: INPAC-Institute for Nanoscale Physics and Chemistry, Pulsed Field Group, K.U.Leuven, Department of Physics, Lancaster University
– sequence: 3
  givenname: M.
  surname: Jivanescu
  fullname: Jivanescu, M.
  organization: INPAC-Institute for Nanoscale Physics and Chemistry, Semiconductor Physics Laboratory, K.U.Leuven
– sequence: 4
  givenname: A.
  surname: Stesmans
  fullname: Stesmans, A.
  organization: INPAC-Institute for Nanoscale Physics and Chemistry, Semiconductor Physics Laboratory, K.U.Leuven
– sequence: 5
  givenname: M.
  surname: Zacharias
  fullname: Zacharias, M.
  organization: Institute of Microsystems Engineering, Albert Ludwigs University Freiburg
– sequence: 6
  givenname: O. I.
  surname: Lebedev
  fullname: Lebedev, O. I.
  organization: EMAT, University of Antwerp (RUCA)
– sequence: 7
  givenname: G.
  surname: Van Tendeloo
  fullname: Van Tendeloo, G.
  organization: EMAT, University of Antwerp (RUCA)
– sequence: 8
  givenname: V. V.
  surname: Moshchalkov
  fullname: Moshchalkov, V. V.
  organization: INPAC-Institute for Nanoscale Physics and Chemistry, Pulsed Field Group, K.U.Leuven
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18654491$$D View this record in MEDLINE/PubMed
BookMark eNp1kctLxDAQh4Movm-epXjwZNc8m_Qoiy8QBB_nkKaJRtpkTdKD_72tu7ogepoZ-Gb4mN8e2PTBGwCOEJwhSMS598qHGYZQzPgG2EWcipKQmm3-9ILvgL2U3iBkuMZ0G-wgUTFKa7QLHuadSslZp1V2wRfKt4UOPsfQFcEW-dUUIboX56dp8Rpy6IbeeZO08doUNoa-eHTF5KDjR8qqSwdgy47FHK7qPni-unya35R399e384u7UlMMc9kw2JqqwQ1jXJAKN5Tq1hDU1sJyiFmDRQ0trxRVXCCCEMdtayvDEawsaTnZB6fLu4sY3geTsuzdqNV1ypswJFnVhNYEixE8-QW-hSH60U0KjhgbKTRCxytoaHrTykV0vYof8vtVI3C2BHQMKUVj1wiUUxLyKwk5JSEnO_wL1y5__ThH5br_lsrlUhpv-xcT16Z_8p9tQ5w9
CitedBy_id crossref_primary_10_1134_S1063782614030105
crossref_primary_10_1038_s41377_023_01168_5
crossref_primary_10_1111_ijac_13109
crossref_primary_10_1063_1_3044480
crossref_primary_10_1021_acs_jpcc_5b01137
crossref_primary_10_1002_asia_200900403
crossref_primary_10_1038_nmat2398
crossref_primary_10_1021_acsami_5b02641
crossref_primary_10_1103_PhysRevB_81_245307
crossref_primary_10_1063_1_4901942
crossref_primary_10_1134_S1027451012060092
crossref_primary_10_1149_1_3289734
crossref_primary_10_1002_adfm_201200572
crossref_primary_10_1134_S1995078015050183
crossref_primary_10_1002_anie_201202085
crossref_primary_10_1016_j_matchemphys_2009_06_037
crossref_primary_10_1039_C5CP01371B
crossref_primary_10_1103_PhysRevLett_104_103901
crossref_primary_10_1088_1757_899X_490_2_022071
crossref_primary_10_1016_j_tsf_2011_06_020
crossref_primary_10_1002_chem_201804986
crossref_primary_10_1364_OE_20_011487
crossref_primary_10_1039_D3CP03698G
crossref_primary_10_1103_PhysRevB_84_075342
crossref_primary_10_1016_j_mee_2016_02_033
crossref_primary_10_1039_C8CP00616D
crossref_primary_10_1039_C3CP54570A
crossref_primary_10_1088_0957_4484_22_5_055707
crossref_primary_10_1088_0022_3727_44_25_255402
crossref_primary_10_1063_5_0012515
crossref_primary_10_1088_0957_4484_20_13_135203
crossref_primary_10_3390_photonics10040358
crossref_primary_10_1155_2012_572746
crossref_primary_10_1186_s11671_016_1707_z
crossref_primary_10_1039_c3nr05960j
crossref_primary_10_3390_s17102396
crossref_primary_10_1021_acsabm_9b00264
crossref_primary_10_1103_PhysRevB_80_155332
crossref_primary_10_1103_PhysRevB_83_045308
crossref_primary_10_1088_0256_307X_30_8_087801
crossref_primary_10_1088_0957_4484_20_36_365207
crossref_primary_10_1557_opl_2011_1409
crossref_primary_10_1039_C5NR08470A
crossref_primary_10_1186_1556_276X_6_320
crossref_primary_10_1016_j_tsf_2010_12_015
crossref_primary_10_1063_1_3100045
crossref_primary_10_1007_s11664_019_07368_3
crossref_primary_10_4028_www_scientific_net_SSP_156_158_529
crossref_primary_10_1039_c3ta11823a
crossref_primary_10_1002_adma_201104578
crossref_primary_10_1038_s41467_024_51591_4
crossref_primary_10_1002_pip_1230
crossref_primary_10_1051_epjap_2013130126
crossref_primary_10_1557_opl_2012_1058
crossref_primary_10_1088_0957_4484_23_10_105401
crossref_primary_10_1021_jp308545q
crossref_primary_10_1116_6_0002531
crossref_primary_10_1021_jacs_6b00479
crossref_primary_10_1088_0957_4484_19_45_455704
crossref_primary_10_1002_pssb_202100549
crossref_primary_10_1002_solr_202200995
crossref_primary_10_1016_j_jlumin_2024_120534
crossref_primary_10_1016_j_jlumin_2021_117909
crossref_primary_10_1021_jp1092948
crossref_primary_10_1039_C5NR01031D
crossref_primary_10_1007_s00604_019_3494_6
crossref_primary_10_3389_fchem_2021_721454
crossref_primary_10_1016_j_matchemphys_2014_08_016
crossref_primary_10_1088_0953_8984_24_4_045301
crossref_primary_10_1063_1_4824178
crossref_primary_10_1007_s10853_020_05374_z
crossref_primary_10_1002_pssb_201700633
crossref_primary_10_3390_nano5020614
crossref_primary_10_1038_srep07372
crossref_primary_10_1021_acs_nanolett_6b01361
crossref_primary_10_1149_2162_8777_acfc65
crossref_primary_10_1088_1361_6463_ab2abc
crossref_primary_10_1039_C4CP05126B
crossref_primary_10_1021_acs_nanolett_0c03818
crossref_primary_10_1088_1361_6641_ab3536
crossref_primary_10_1039_D4TC01920B
crossref_primary_10_1103_PhysRevB_80_165326
crossref_primary_10_1038_nnano_2008_40
crossref_primary_10_1002_smll_201401965
crossref_primary_10_1002_bio_2342
crossref_primary_10_1016_j_pnsc_2014_04_005
crossref_primary_10_1063_1_4764893
crossref_primary_10_1038_s41598_017_18377_9
crossref_primary_10_1016_j_spmi_2014_08_015
crossref_primary_10_1116_1_4892387
crossref_primary_10_1186_s11671_016_1530_6
crossref_primary_10_1364_OE_396654
crossref_primary_10_1063_1_4835095
crossref_primary_10_1016_j_apsusc_2017_11_001
crossref_primary_10_1063_1_4946862
crossref_primary_10_1016_j_jlumin_2014_05_038
crossref_primary_10_1021_acsanm_8b01053
crossref_primary_10_1021_nl400570p
crossref_primary_10_1002_pip_2766
crossref_primary_10_1016_j_apsusc_2016_01_076
crossref_primary_10_1063_1_3078281
crossref_primary_10_1016_j_tsf_2011_06_084
crossref_primary_10_1063_1_5026171
crossref_primary_10_1039_C5RA13119G
crossref_primary_10_1557_jmr_2012_377
crossref_primary_10_7498_aps_61_217803
crossref_primary_10_1016_j_scriptamat_2009_08_006
crossref_primary_10_1016_j_apsusc_2014_09_123
crossref_primary_10_1038_nnano_2017_153
crossref_primary_10_1039_D2CP00325B
crossref_primary_10_3390_ma13194267
crossref_primary_10_7498_aps_59_6473
crossref_primary_10_1007_s10853_013_7819_2
crossref_primary_10_1016_j_mseb_2012_10_015
crossref_primary_10_1088_0957_4484_22_21_215704
crossref_primary_10_1016_j_mseb_2012_10_018
crossref_primary_10_1021_acs_langmuir_2c00891
crossref_primary_10_2184_lsj_42_3_256
crossref_primary_10_1063_1_3602918
crossref_primary_10_1002_adma_201202286
crossref_primary_10_1063_1_3068175
crossref_primary_10_1088_1361_6641_ab63f0
crossref_primary_10_1016_j_ssc_2008_12_023
crossref_primary_10_1103_PhysRevB_82_045302
crossref_primary_10_1103_PhysRevB_88_085424
crossref_primary_10_2497_jjspm_66_145
crossref_primary_10_1038_nnano_2011_167
crossref_primary_10_1088_0022_3727_45_4_045103
crossref_primary_10_1209_0295_5075_96_57006
crossref_primary_10_1103_PhysRevLett_107_206805
crossref_primary_10_1103_PhysRevB_84_165316
crossref_primary_10_1016_j_apsusc_2015_03_112
crossref_primary_10_1002_pssa_201127028
crossref_primary_10_1016_j_solener_2019_04_021
crossref_primary_10_1021_acs_jpcc_6b06197
crossref_primary_10_1016_j_jlumin_2013_09_053
crossref_primary_10_1007_s12274_018_1976_1
crossref_primary_10_1016_j_scriptamat_2013_12_004
crossref_primary_10_1021_jp500576k
crossref_primary_10_1088_0953_8984_23_50_505302
crossref_primary_10_1039_C6TC05372F
crossref_primary_10_1021_acsnano_5b03268
crossref_primary_10_1063_1_4830280
crossref_primary_10_1134_S199507801802009X
crossref_primary_10_1016_j_apsusc_2014_02_047
crossref_primary_10_1016_j_jallcom_2019_06_171
crossref_primary_10_1088_1757_899X_322_2_022049
crossref_primary_10_1021_jp204350u
crossref_primary_10_1103_PhysRevB_83_155327
crossref_primary_10_1063_1_4934570
crossref_primary_10_1002_ange_200802230
crossref_primary_10_1016_j_mseb_2012_10_030
crossref_primary_10_1016_j_optmat_2010_04_037
crossref_primary_10_1038_nnano_2010_236
crossref_primary_10_1016_j_mseb_2012_05_016
crossref_primary_10_1103_PhysRevB_91_195317
crossref_primary_10_1088_0957_4484_21_43_435701
crossref_primary_10_1016_j_cplett_2017_02_060
crossref_primary_10_1021_jp2075836
crossref_primary_10_1038_srep12469
crossref_primary_10_1063_1_3476286
crossref_primary_10_1016_j_jlumin_2015_05_020
crossref_primary_10_3103_S8756699024700067
crossref_primary_10_1109_TDMR_2012_2214781
crossref_primary_10_1021_ph500145p
crossref_primary_10_1080_1539445X_2010_525198
crossref_primary_10_1016_j_solidstatesciences_2009_05_004
crossref_primary_10_1002_adfm_200801548
crossref_primary_10_1016_j_ssc_2011_07_013
crossref_primary_10_1016_j_jlumin_2011_07_008
crossref_primary_10_1063_1_4747207
crossref_primary_10_1063_1_4895133
crossref_primary_10_1007_s11051_018_4138_1
crossref_primary_10_1063_1_4880722
crossref_primary_10_1016_j_jlumin_2019_01_039
crossref_primary_10_1002_smll_201000841
crossref_primary_10_1088_1367_2630_abafe7
crossref_primary_10_1039_C4NR04688A
crossref_primary_10_3390_app7010072
crossref_primary_10_1063_1_3330658
crossref_primary_10_1103_PhysRevLett_132_126402
crossref_primary_10_1021_acs_jpclett_6b00176
crossref_primary_10_1063_1_4869801
crossref_primary_10_1103_PhysRevB_92_035432
crossref_primary_10_1039_c3cp51621k
crossref_primary_10_1016_j_jallcom_2017_03_134
crossref_primary_10_1016_j_jlumin_2015_10_029
crossref_primary_10_1002_adma_201101797
crossref_primary_10_1016_j_matlet_2010_02_015
crossref_primary_10_1039_c6pp00212a
crossref_primary_10_1016_j_phpro_2012_03_522
crossref_primary_10_1016_j_jallcom_2013_06_066
crossref_primary_10_1016_j_jece_2017_05_023
crossref_primary_10_1016_j_ceramint_2022_04_204
crossref_primary_10_1063_1_4758473
crossref_primary_10_1109_JLT_2008_2004816
crossref_primary_10_1021_acs_langmuir_3c00896
crossref_primary_10_1016_j_cclet_2019_08_034
crossref_primary_10_1063_1_4800823
crossref_primary_10_1002_smll_201000543
crossref_primary_10_1039_C8CC07903J
crossref_primary_10_1063_1_4818580
crossref_primary_10_1016_j_optmat_2016_10_060
crossref_primary_10_1039_D0TC01442G
crossref_primary_10_1039_C5RA22827A
crossref_primary_10_1039_C3TC31994F
crossref_primary_10_1063_1_4770375
crossref_primary_10_1038_srep36951
crossref_primary_10_1016_j_apsusc_2011_08_062
crossref_primary_10_1063_1_3657771
crossref_primary_10_1021_ja808827g
crossref_primary_10_1088_0256_307X_30_6_067803
crossref_primary_10_1002_adfm_201100784
crossref_primary_10_1016_j_optcom_2010_03_016
crossref_primary_10_1063_1_4729605
crossref_primary_10_1016_j_biomaterials_2024_122743
crossref_primary_10_1063_1_4957219
crossref_primary_10_1039_C4IB00216D
crossref_primary_10_1039_c1nr10365b
crossref_primary_10_1021_am401313x
crossref_primary_10_1021_nl901509k
crossref_primary_10_1103_PhysRevB_88_075322
crossref_primary_10_1088_0031_8949_87_03_035701
crossref_primary_10_1103_PhysRevB_79_235332
crossref_primary_10_1021_jp212013a
crossref_primary_10_1063_1_4960994
crossref_primary_10_1016_j_apsusc_2011_06_116
crossref_primary_10_1088_1054_660X_25_1_015901
crossref_primary_10_1103_PhysRevLett_104_176803
crossref_primary_10_1016_j_cap_2010_11_112
crossref_primary_10_3390_ma14164423
crossref_primary_10_1103_PhysRevB_89_045428
crossref_primary_10_1002_cnma_201900289
crossref_primary_10_1063_1_3637636
crossref_primary_10_1002_adfm_201400587
crossref_primary_10_1016_j_jnoncrysol_2017_01_044
crossref_primary_10_1063_1_3369041
crossref_primary_10_1016_j_physe_2008_08_046
crossref_primary_10_1021_acs_jpcc_5b08578
crossref_primary_10_1103_PhysRevB_79_235439
crossref_primary_10_5857_RCP_2015_4_3_54
crossref_primary_10_1016_j_mseb_2015_02_013
crossref_primary_10_1063_1_3671671
crossref_primary_10_1007_s11051_019_4575_5
crossref_primary_10_1038_srep16682
crossref_primary_10_1016_j_jlumin_2011_02_006
crossref_primary_10_1016_j_mee_2012_07_095
crossref_primary_10_1021_cm200270d
crossref_primary_10_1007_s12598_018_1052_8
crossref_primary_10_1088_2515_7647_abc92c
crossref_primary_10_1016_j_apsusc_2012_11_004
crossref_primary_10_1063_1_3224865
crossref_primary_10_1016_j_cap_2017_09_005
crossref_primary_10_1088_1742_6596_2315_1_012002
crossref_primary_10_1063_1_3130103
crossref_primary_10_1002_pssb_201451285
crossref_primary_10_1007_s00339_024_07451_5
crossref_primary_10_1063_1_4790300
crossref_primary_10_1063_1_2999629
crossref_primary_10_1088_2043_6262_3_2_025002
crossref_primary_10_1109_LPT_2015_2495519
crossref_primary_10_1016_j_spmi_2013_04_034
crossref_primary_10_1002_admi_201400359
crossref_primary_10_1038_nphoton_2012_36
crossref_primary_10_1002_anie_200802230
crossref_primary_10_1063_1_4798395
crossref_primary_10_1002_pssa_200881306
crossref_primary_10_1016_j_jlumin_2012_04_007
crossref_primary_10_1088_0022_3727_43_45_455102
crossref_primary_10_1007_s10514_018_9709_6
crossref_primary_10_1016_j_vacuum_2021_110294
crossref_primary_10_1063_1_3556657
crossref_primary_10_1088_0957_4484_21_50_505602
crossref_primary_10_1016_j_chemphys_2012_07_009
crossref_primary_10_1007_s10854_015_3147_4
crossref_primary_10_1063_1_4871980
crossref_primary_10_1063_1_4916637
crossref_primary_10_1021_la3030952
crossref_primary_10_1063_1_3601350
crossref_primary_10_1016_j_matpr_2017_10_202
crossref_primary_10_1021_jp201565z
crossref_primary_10_1109_JPROC_2009_2015060
crossref_primary_10_1088_0957_4484_22_33_335703
crossref_primary_10_1063_1_3169513
crossref_primary_10_3390_cryst10050340
crossref_primary_10_1063_1_3055602
crossref_primary_10_1063_1_3204966
crossref_primary_10_1063_1_3520673
crossref_primary_10_1088_1674_1056_20_10_107801
crossref_primary_10_1021_nl903868w
crossref_primary_10_1002_admi_201500360
crossref_primary_10_1021_nl901970u
crossref_primary_10_1515_nanoph_2022_0206
crossref_primary_10_3390_nano10112100
crossref_primary_10_1007_s11671_010_9707_x
crossref_primary_10_1002_advs_201801967
crossref_primary_10_1002_pssa_200925201
crossref_primary_10_1039_C9CP04709C
crossref_primary_10_1039_b9nj00342h
crossref_primary_10_1088_0957_4484_20_19_195201
crossref_primary_10_1088_1054_660X_24_8_085902
crossref_primary_10_1039_c0cp02647f
crossref_primary_10_1038_nnano_2013_271
crossref_primary_10_1002_pssa_201200734
crossref_primary_10_1063_1_4813743
crossref_primary_10_1039_C4CS00486H
crossref_primary_10_1063_1_3682537
crossref_primary_10_1107_S2052520619009351
crossref_primary_10_1021_acs_jpclett_8b02154
crossref_primary_10_1016_j_jallcom_2014_10_109
crossref_primary_10_1021_nn101022b
crossref_primary_10_1021_nl8021016
crossref_primary_10_1103_PhysRevB_82_085320
crossref_primary_10_1063_1_4824646
crossref_primary_10_1016_j_physe_2021_114680
crossref_primary_10_1016_j_physe_2008_08_021
crossref_primary_10_1016_j_physe_2008_08_022
crossref_primary_10_1002_adma_201601173
crossref_primary_10_1021_jp301713v
crossref_primary_10_1007_s11051_012_1097_9
crossref_primary_10_1016_j_jnoncrysol_2011_06_027
crossref_primary_10_1063_1_3553583
crossref_primary_10_1088_0957_4484_25_26_265703
crossref_primary_10_1021_ja202466m
crossref_primary_10_1109_JPHOT_2016_2600373
crossref_primary_10_1021_acs_jpcc_9b06932
crossref_primary_10_1016_j_apsusc_2014_01_041
crossref_primary_10_1063_1_4905671
crossref_primary_10_1002_pssa_201200957
crossref_primary_10_1088_0022_3727_48_44_445302
crossref_primary_10_1063_1_3701696
crossref_primary_10_1002_pssa_201800565
crossref_primary_10_1002_pssa_201700718
crossref_primary_10_1039_D2TC02352K
crossref_primary_10_1038_srep06131
crossref_primary_10_1103_PhysRevB_86_125302
crossref_primary_10_1364_OME_2_000501
crossref_primary_10_35848_1347_4065_abdf16
crossref_primary_10_1016_j_solmat_2013_03_011
crossref_primary_10_1002_adma_201200539
crossref_primary_10_1088_0957_4484_23_47_475709
crossref_primary_10_1007_s12274_018_2217_3
crossref_primary_10_1039_C4NR00796D
crossref_primary_10_1063_1_2966690
crossref_primary_10_1143_APEX_5_035802
crossref_primary_10_1063_1_5116778
crossref_primary_10_1016_j_jcis_2011_03_006
crossref_primary_10_1088_1361_6463_aa7196
crossref_primary_10_1021_acsnano_4c01150
crossref_primary_10_1088_0957_4484_26_29_295201
crossref_primary_10_1088_0957_4484_20_31_315704
crossref_primary_10_1016_j_electacta_2015_04_155
crossref_primary_10_1016_j_physe_2013_08_003
crossref_primary_10_1142_S1793292021501150
crossref_primary_10_1002_ange_201202085
crossref_primary_10_1038_nmat2413
crossref_primary_10_1021_nl301787g
crossref_primary_10_1016_j_spmi_2016_06_006
crossref_primary_10_1039_C8NR01552J
crossref_primary_10_1063_1_3021414
crossref_primary_10_1039_c3tc30571f
crossref_primary_10_1002_adpr_202100083
crossref_primary_10_1088_0957_4484_23_39_395205
crossref_primary_10_1021_acsphotonics_0c01846
crossref_primary_10_1063_1_3648108
crossref_primary_10_1088_1361_6528_aae67c
crossref_primary_10_1021_la3042082
crossref_primary_10_1088_0022_3727_42_11_113001
crossref_primary_10_1557_jmr_2019_114
crossref_primary_10_1209_0295_5075_96_27003
crossref_primary_10_1016_j_jlumin_2020_117845
crossref_primary_10_1103_PhysRevB_84_125326
crossref_primary_10_1063_1_3127228
crossref_primary_10_1063_1_3614585
crossref_primary_10_1063_1_3064124
crossref_primary_10_1557_jmr_2012_295
crossref_primary_10_1021_jp511660h
crossref_primary_10_1149_1_3074295
crossref_primary_10_1007_s12200_012_0185_x
crossref_primary_10_1002_adfm_202411981
crossref_primary_10_1038_lsa_2013_3
crossref_primary_10_1088_0957_4484_22_30_305605
crossref_primary_10_1063_1_4918588
crossref_primary_10_1103_PhysRevMaterials_1_051601
crossref_primary_10_1186_1556_276X_6_612
crossref_primary_10_1038_nmat2595
crossref_primary_10_1021_am300519a
crossref_primary_10_1103_PhysRevB_86_075312
crossref_primary_10_1063_1_3517091
crossref_primary_10_1142_S1793292021501125
crossref_primary_10_1016_j_tsf_2009_01_060
crossref_primary_10_1002_sstr_202000049
crossref_primary_10_1103_PhysRevB_84_195317
crossref_primary_10_1142_S2010194514601471
crossref_primary_10_1557_PROC_1260_T06_05
crossref_primary_10_1007_s11051_013_2063_x
crossref_primary_10_1063_1_3224952
crossref_primary_10_1039_D3NR04478E
crossref_primary_10_1016_j_vacuum_2015_06_007
crossref_primary_10_1063_1_4931670
crossref_primary_10_1134_S1063782611050034
crossref_primary_10_1039_C9TB01042D
crossref_primary_10_1103_PhysRevB_80_205323
crossref_primary_10_1063_1_4826513
crossref_primary_10_3390_nano9010055
crossref_primary_10_1063_1_3388176
crossref_primary_10_1021_ja2048804
crossref_primary_10_1109_JLT_2010_2042788
crossref_primary_10_1038_srep09932
crossref_primary_10_1088_0022_3727_48_45_455103
crossref_primary_10_1155_2012_872576
crossref_primary_10_7498_aps_59_8915
crossref_primary_10_1039_b902029b
crossref_primary_10_1063_1_3556449
crossref_primary_10_1021_acsaem_0c03163
crossref_primary_10_1039_b902671a
crossref_primary_10_1007_s12633_019_00168_8
crossref_primary_10_1038_s41598_020_72990_9
crossref_primary_10_1364_OE_21_023416
crossref_primary_10_1002_pssa_201532528
crossref_primary_10_1016_j_jallcom_2015_03_104
crossref_primary_10_1021_acsami_6b16505
crossref_primary_10_1088_0957_4484_22_23_235307
crossref_primary_10_1039_c2nr30626c
crossref_primary_10_1364_OE_22_00A276
crossref_primary_10_1088_0957_4484_27_36_365601
crossref_primary_10_1103_PhysRevB_87_165441
crossref_primary_10_1103_PhysRevB_82_165411
crossref_primary_10_1021_jp102017d
crossref_primary_10_1063_1_4939017
crossref_primary_10_1088_0953_8984_26_17_173201
crossref_primary_10_1039_b919412f
crossref_primary_10_1002_pssa_201228309
crossref_primary_10_1021_acsphotonics_7b00188
crossref_primary_10_1038_lsa_2015_18
crossref_primary_10_1049_mnl_2013_0119
Cites_doi 10.1103/PhysRevB.62.10324
10.1103/PhysRevB.48.11024
10.1063/1.103561
10.1038/nmat1307
10.1103/PhysRevLett.61.444
10.1063/1.1433906
10.1016/j.physe.2006.12.009
10.1103/PhysRevLett.82.197
10.1016/j.physb.2004.01.119
10.1103/PhysRevB.50.5204
10.1063/1.104512
10.1038/35044012
10.1016/0079-6816(83)90006-0
10.1149/1.2069318
10.1063/1.1525051
10.1103/PhysRevLett.88.097401
10.1063/1.367005
10.1063/1.1498960
10.1103/PhysRevLett.79.1770
10.1103/PhysRevB.69.195309
10.1103/PhysRevB.72.195313
10.1038/35059301
10.1002/adma.200401126
10.1016/0022-2313(96)82860-2
10.1063/1.356486
10.1103/PhysRevLett.94.087405
10.1103/PhysRevLett.93.226104
10.1103/PhysRevB.47.1397
10.1103/PhysRevB.58.15801
10.1103/PhysRevB.57.9088
10.1063/1.116085
10.1063/1.2193810
10.1088/0953-8984/18/1/L01
ContentType Journal Article
Copyright Springer Nature Limited 2008
Copyright Nature Publishing Group Mar 2008
Copyright_xml – notice: Springer Nature Limited 2008
– notice: Copyright Nature Publishing Group Mar 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/nnano.2008.7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 178
ExternalDocumentID 2373848721
18654491
10_1038_nnano_2008_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c420t-b50de6b2b5578362b44cde31d98f7025b2890f76a4a78131172ddf6e7106f3d73
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Fri Jul 11 10:15:38 EDT 2025
Fri Jul 25 09:10:44 EDT 2025
Mon Jul 21 06:01:43 EDT 2025
Tue Jul 01 01:25:21 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Fri Feb 21 02:40:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-b50de6b2b5578362b44cde31d98f7025b2890f76a4a78131172ddf6e7106f3d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 18654491
PQID 871554931
PQPubID 546299
PageCount 5
ParticipantIDs proquest_miscellaneous_69349328
proquest_journals_871554931
pubmed_primary_18654491
crossref_primary_10_1038_nnano_2008_7
crossref_citationtrail_10_1038_nnano_2008_7
springer_journals_10_1038_nnano_2008_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-03-01
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-03-01
  day: 01
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nature Nanotech
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2008
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Sychugov, Juhasz, Valenta, Linnros (CR31) 2005; 94
Stesmans, Nouwen, Afanas'ev (CR24) 1998; 58
Walters, Bourianoff, Atwater (CR13) 2005; 4
Canham (CR2) 1990; 57
Ball (CR1) 2001; 409
Zimina (CR22) 2006; 88
Fauchet (CR4) 1996; 70
Wolkin (CR5) 1999; 82
Walck, Reinecke (CR29) 1998; 57
Ogüt, Chelikowsky, Louie (CR17) 1997; 79
Hayne (CR19) 2004; 346–347
Puzder, Williamson, Grossman, Galli (CR9) 2002; 88
Stesmans, Scheerlinck (CR26) 1994; 75
Stesmans, Afanas'ev (CR23) 1998; 83
Warren, Poindexter, Offenberg, Müller-Warmuth (CR25) 1992; 139
Hadjisavvas, Kelires (CR6) 2007; 38
Hadjisavvas, Kelires (CR10) 2004; 93
Abtew, Drabold (CR34) 2006; 18
Tiwari (CR14) 1996; 68
Tsai, Griscom, Friebele (CR28) 1988; 61
Davies (CR33) 1998
Heitmann (CR30) 2004; 69
Lehmann, Gösele (CR3) 1991; 58
Yi, Heitmann, Scholz, Zacharias (CR32) 2002; 81
Zacharias (CR21) 2002; 80
Pavesi, Dal Negro, Mazzoleni, Franzo, Priolo (CR12) 2000; 408
Hayne (CR18) 2000; 62
Stesmans, Scheerlinck (CR27) 1994; 50
Delerue, Allan, Lannoo (CR15) 1993; 48
Poindexter, Caplan (CR20) 1983; 14
Heitmann, Müller, Zacharias, Gösele (CR7) 2005; 17
Averboukh (CR8) 2002; 92
Delley, Steigmeier (CR16) 1993; 47
Wang (CR11) 2005; 72
P Ball (BFnnano20087_CR1) 2001; 409
XX Wang (BFnnano20087_CR11) 2005; 72
G Hadjisavvas (BFnnano20087_CR6) 2007; 38
B Delley (BFnnano20087_CR16) 1993; 47
MV Wolkin (BFnnano20087_CR5) 1999; 82
V Lehmann (BFnnano20087_CR3) 1991; 58
JH Davies (BFnnano20087_CR33) 1998
M Zacharias (BFnnano20087_CR21) 2002; 80
A Stesmans (BFnnano20087_CR24) 1998; 58
J Heitmann (BFnnano20087_CR30) 2004; 69
A Zimina (BFnnano20087_CR22) 2006; 88
G Hadjisavvas (BFnnano20087_CR10) 2004; 93
M Hayne (BFnnano20087_CR19) 2004; 346–347
A Stesmans (BFnnano20087_CR23) 1998; 83
A Puzder (BFnnano20087_CR9) 2002; 88
WL Warren (BFnnano20087_CR25) 1992; 139
LT Canham (BFnnano20087_CR2) 1990; 57
TE Tsai (BFnnano20087_CR28) 1988; 61
M Hayne (BFnnano20087_CR18) 2000; 62
PM Fauchet (BFnnano20087_CR4) 1996; 70
TA Abtew (BFnnano20087_CR34) 2006; 18
C Delerue (BFnnano20087_CR15) 1993; 48
B Averboukh (BFnnano20087_CR8) 2002; 92
A Stesmans (BFnnano20087_CR27) 1994; 50
EH Poindexter (BFnnano20087_CR20) 1983; 14
RJ Walters (BFnnano20087_CR13) 2005; 4
A Stesmans (BFnnano20087_CR26) 1994; 75
J Heitmann (BFnnano20087_CR7) 2005; 17
S Ogüt (BFnnano20087_CR17) 1997; 79
L Pavesi (BFnnano20087_CR12) 2000; 408
SN Walck (BFnnano20087_CR29) 1998; 57
I Sychugov (BFnnano20087_CR31) 2005; 94
S Tiwari (BFnnano20087_CR14) 1996; 68
LX Yi (BFnnano20087_CR32) 2002; 81
18654483 - Nat Nanotechnol. 2008 Mar;3(3):134-5
References_xml – volume: 62
  start-page: 10324
  year: 2000
  end-page: 10328
  ident: CR18
  article-title: Electron and hole confinement in stacked self-assembled InP quantum dots
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.10324
– volume: 48
  start-page: 11024
  year: 1993
  end-page: 11036
  ident: CR15
  article-title: Theoretical aspects of the luminescence of porous silicon
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.11024
– volume: 57
  start-page: 1046
  year: 1990
  end-page: 1048
  ident: CR2
  article-title: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.103561
– volume: 4
  start-page: 143
  year: 2005
  end-page: 146
  ident: CR13
  article-title: Field-effect electroluminescence in silicon nanocrystals
  publication-title: Nature Mater.
  doi: 10.1038/nmat1307
– volume: 61
  start-page: 444
  year: 1988
  end-page: 446
  ident: CR28
  article-title: Mechanism of intrinsic Si E'-center photogeneration in high-purity silica
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.444
– volume: 80
  start-page: 661
  year: 2002
  end-page: 663
  ident: CR21
  article-title: Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO superlattice approach
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1433906
– volume: 38
  start-page: 99
  year: 2007
  end-page: 105
  ident: CR6
  article-title: Theory of interface structure, energetics, and electronic properties of embedded Si/a-SiO nanocrystals
  publication-title: Physica E
  doi: 10.1016/j.physe.2006.12.009
– volume: 82
  start-page: 197
  year: 1999
  end-page: 200
  ident: CR5
  article-title: Electronic states and luminescence in porous Si: The role of oxygen
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.197
– volume: 346–347
  start-page: 421
  year: 2004
  end-page: 427
  ident: CR19
  article-title: Pulsed magnetic fields as probe of self-assembled semiconductor nanostructures
  publication-title: Physica B
  doi: 10.1016/j.physb.2004.01.119
– volume: 50
  start-page: 5204
  year: 1994
  end-page: 5212
  ident: CR27
  article-title: Natural intrinsic EX center in thermal SiO on Si: O hyperfine interaction
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.5204
– volume: 58
  start-page: 856
  year: 1991
  end-page: 858
  ident: CR3
  article-title: Porous Si formation: A quantum wire effect
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.104512
– volume: 408
  start-page: 440
  year: 2000
  end-page: 444
  ident: CR12
  article-title: Optical gain in silicon nanocrystals
  publication-title: Nature
  doi: 10.1038/35044012
– volume: 14
  start-page: 201
  year: 1983
  end-page: 294
  ident: CR20
  article-title: Characterization of Si/SiO interface defects by electron spin resonance
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/0079-6816(83)90006-0
– volume: 139
  start-page: 872
  year: 1992
  end-page: 880
  ident: CR25
  article-title: Paramagnetic point defects in amorphous silicon dioxide and amorphous silicon nitride thin films
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2069318
– volume: 81
  start-page: 4248
  year: 2002
  end-page: 4250
  ident: CR32
  article-title: Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiO layers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1525051
– volume: 88
  start-page: 097401
  year: 2002
  ident: CR9
  article-title: Surface chemistry of silicon nanoclusters
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.097401
– volume: 83
  start-page: 2449
  year: 1998
  end-page: 2457
  ident: CR23
  article-title: Electron spin resonance features of interface defects in thermal (100)Si/SiO
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.367005
– volume: 92
  start-page: 3564
  year: 2002
  end-page: 3568
  ident: CR8
  article-title: Luminescence studies of a Si/SiO superlattice
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1498960
– volume: 79
  start-page: 1770
  year: 1997
  end-page: 1773
  ident: CR17
  article-title: Quantum confinement and optical gaps in Si nanocrystals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.1770
– volume: 69
  start-page: 195309
  year: 2004
  ident: CR30
  article-title: Excitons in Si nanocrystals: Confinement and migration effects
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.195309
– volume: 72
  start-page: 195313
  year: 2005
  ident: CR11
  article-title: Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO matrix
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.195313
– volume: 409
  start-page: 974
  year: 2001
  end-page: 976
  ident: CR1
  article-title: Let there be light
  publication-title: Nature
  doi: 10.1038/35059301
– year: 1998
  ident: CR33
  publication-title: The Physics of Low-Dimensional Semiconductors
– volume: 17
  start-page: 795
  year: 2005
  end-page: 803
  ident: CR7
  article-title: Silicon nanocrystals: Size matters
  publication-title: Adv. Mater
  doi: 10.1002/adma.200401126
– volume: 70
  start-page: 294
  year: 1996
  end-page: 309
  ident: CR4
  article-title: Photoluminescence and electroluminescence from porous silicon
  publication-title: J. Lumin.
  doi: 10.1016/0022-2313(96)82860-2
– volume: 75
  start-page: 1047
  year: 1994
  end-page: 1058
  ident: CR26
  article-title: Generation aspects of the delocalized intrinsic EX defect in thermal SiO
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.356486
– volume: 94
  start-page: 087405
  year: 2005
  ident: CR31
  article-title: Narrow luminescence linewidth of a silicon quantum dot
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.087405
– volume: 93
  start-page: 226104
  year: 2004
  ident: CR10
  article-title: Structure and energetics of Si nanocrystals embedded in ‐SiO
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.226104
– volume: 47
  start-page: 1397
  year: 1993
  end-page: 1400
  ident: CR16
  article-title: Quantum confinement in Si nanocrystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.1397
– volume: 58
  start-page: 15801
  year: 1998
  end-page: 15809
  ident: CR24
  article-title: P interface defect in thermal (100)Si/SiO : Si hyperfine interaction
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.15801
– volume: 57
  start-page: 9088
  year: 1998
  end-page: 9096
  ident: CR29
  article-title: Exciton diamagnetic shift in semiconductor nanostrucures
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.57.9088
– volume: 68
  start-page: 1377
  year: 1996
  end-page: 1379
  ident: CR14
  article-title: A silicon nanocrystal based memory
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.116085
– volume: 88
  start-page: 163103
  year: 2006
  ident: CR22
  article-title: Electronic structure and chemical environment of silicon nanoclusters embedded in a silicon dioxide matrix
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2193810
– volume: 18
  start-page: L1
  year: 2006
  end-page: L6
  ident: CR34
  article-title: Atomistic simulation of light-induced changes in hydrogenated amorphous Si
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/18/1/L01
– volume: 139
  start-page: 872
  year: 1992
  ident: BFnnano20087_CR25
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2069318
– volume: 14
  start-page: 201
  year: 1983
  ident: BFnnano20087_CR20
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/0079-6816(83)90006-0
– volume: 58
  start-page: 856
  year: 1991
  ident: BFnnano20087_CR3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.104512
– volume: 346–347
  start-page: 421
  year: 2004
  ident: BFnnano20087_CR19
  publication-title: Physica B
  doi: 10.1016/j.physb.2004.01.119
– volume: 17
  start-page: 795
  year: 2005
  ident: BFnnano20087_CR7
  publication-title: Adv. Mater
  doi: 10.1002/adma.200401126
– volume: 69
  start-page: 195309
  year: 2004
  ident: BFnnano20087_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.195309
– volume: 82
  start-page: 197
  year: 1999
  ident: BFnnano20087_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.197
– volume: 4
  start-page: 143
  year: 2005
  ident: BFnnano20087_CR13
  publication-title: Nature Mater.
  doi: 10.1038/nmat1307
– volume: 38
  start-page: 99
  year: 2007
  ident: BFnnano20087_CR6
  publication-title: Physica E
  doi: 10.1016/j.physe.2006.12.009
– volume: 88
  start-page: 163103
  year: 2006
  ident: BFnnano20087_CR22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2193810
– volume: 83
  start-page: 2449
  year: 1998
  ident: BFnnano20087_CR23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.367005
– volume-title: The Physics of Low-Dimensional Semiconductors
  year: 1998
  ident: BFnnano20087_CR33
– volume: 79
  start-page: 1770
  year: 1997
  ident: BFnnano20087_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.1770
– volume: 72
  start-page: 195313
  year: 2005
  ident: BFnnano20087_CR11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.195313
– volume: 88
  start-page: 097401
  year: 2002
  ident: BFnnano20087_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.097401
– volume: 61
  start-page: 444
  year: 1988
  ident: BFnnano20087_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.444
– volume: 93
  start-page: 226104
  year: 2004
  ident: BFnnano20087_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.226104
– volume: 62
  start-page: 10324
  year: 2000
  ident: BFnnano20087_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.10324
– volume: 18
  start-page: L1
  year: 2006
  ident: BFnnano20087_CR34
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/18/1/L01
– volume: 75
  start-page: 1047
  year: 1994
  ident: BFnnano20087_CR26
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.356486
– volume: 80
  start-page: 661
  year: 2002
  ident: BFnnano20087_CR21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1433906
– volume: 50
  start-page: 5204
  year: 1994
  ident: BFnnano20087_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.5204
– volume: 57
  start-page: 9088
  year: 1998
  ident: BFnnano20087_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.57.9088
– volume: 409
  start-page: 974
  year: 2001
  ident: BFnnano20087_CR1
  publication-title: Nature
  doi: 10.1038/35059301
– volume: 70
  start-page: 294
  year: 1996
  ident: BFnnano20087_CR4
  publication-title: J. Lumin.
  doi: 10.1016/0022-2313(96)82860-2
– volume: 408
  start-page: 440
  year: 2000
  ident: BFnnano20087_CR12
  publication-title: Nature
  doi: 10.1038/35044012
– volume: 57
  start-page: 1046
  year: 1990
  ident: BFnnano20087_CR2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.103561
– volume: 68
  start-page: 1377
  year: 1996
  ident: BFnnano20087_CR14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.116085
– volume: 58
  start-page: 15801
  year: 1998
  ident: BFnnano20087_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.15801
– volume: 48
  start-page: 11024
  year: 1993
  ident: BFnnano20087_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.11024
– volume: 47
  start-page: 1397
  year: 1993
  ident: BFnnano20087_CR16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.1397
– volume: 92
  start-page: 3564
  year: 2002
  ident: BFnnano20087_CR8
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1498960
– volume: 81
  start-page: 4248
  year: 2002
  ident: BFnnano20087_CR32
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1525051
– volume: 94
  start-page: 087405
  year: 2005
  ident: BFnnano20087_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.087405
– reference: 18654483 - Nat Nanotechnol. 2008 Mar;3(3):134-5
SSID ssj0052924
Score 2.469308
Snippet Silicon dominates the electronics industry, but its poor optical properties mean that III–V compound semiconductors are preferred for photonics applications....
Silicon dominates the electronics industry, but its poor optical properties mean that III-V compound semiconductors are preferred for photonics applications....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 174
SubjectTerms Chemistry and Materials Science
Crystallization - methods
Electronics industry
Hydrogen - chemistry
Luminescent Measurements - methods
Macromolecular Substances - chemistry
Magnetic fields
Magnetics
Materials Science
Materials Testing
Molecular Conformation
Nanocrystals
Nanostructures - chemistry
Nanostructures - radiation effects
Nanotechnology
Nanotechnology - methods
Nanotechnology and Microengineering
Optical properties
Particle Size
Scattering, Radiation
Silicon
Silicon - chemistry
Surface Properties
Wavelengths
Title Classification and control of the origin of photoluminescence from Si nanocrystals
URI https://link.springer.com/article/10.1038/nnano.2008.7
https://www.ncbi.nlm.nih.gov/pubmed/18654491
https://www.proquest.com/docview/871554931
https://www.proquest.com/docview/69349328
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFH6C9gKHiV8bXWH4AFxQtNZxbOeEAK1USExorFJvkX9FQ6qSrmkP--95L3HboQKXSJGdxHovtj_7fX4fwNuAkAFLQiIpz5CwY51o48YJIlORK26FtbRQ_H4ppzPxbZ7NIzenibTK7ZjYDtS-drRHfo7AHme-PB1_XN4mJBpFwdWooPEQ-pS5jBhdar5bb2U87zRtldAJrsRU5L2PUn1eVaaqOyal-nNGOoCZByHSduaZPIGjCBnZp87HT-FBqJ7B43uJBJ_DVattSayf1tDMVJ5FEjqrS4Ygj3UKWHS3vKnXNCYR4d1Rx2Z0xoT9_MWouW51h4Bx0byA2eTi-ss0iWoJiRN8tE5sNvJBWm6zjE5moJmF8-gKn-tSIbKxFFIslTTCKE1JdhT3vpQBIYYsU6_SY-hVdRVeAlNpZrhzGQ-pF9IJI6wM3BiOgCBo7QbwYWuxwsVU4qRosSjakHaqi9a-ncSlGsC7Xe1ll0LjH_WGW-MXsSM1xc7tA3izK8UeQGENU4V60xQyT7EC1wM46Ty2_4qWmRA5Pvt-68L9m__WhNP_NmEIjzq2CDHQXkFvvdqE1whJ1vas_fHwqidfz6D_-eLyx9VvmEbjQA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOVXmVpYX6QLmgqLu2YzsHhBCwbOnjAK3UW_ArAqlKlu5WVX9U_2Nn4mQLKnDrMbLjjGbGM58z4xmAVxEhA47ETFGdIelGJjPWjzJEprLQ3Enn6KC4f6AmR_LLcX68BJf9XRhKq-xtYmuoQ-PpH_k2Anv0fIUYvZv-yqhpFAVX-w4aSSt248U5nthmb3c-oni3OB9_OvwwybqmApmXfDjPXD4MUTnu8pwuMCA10gekOBSm0ggAHEXeKq2stNpQLRrNQ6hURE-sKhG0wHXvwF0pREEbyow_94Y_50XqoaulyfDkp7s8-6Ew23Vt6yZlbuo_PeANWHsjJNt6uvEqrHQQlb1POvUQlmL9CB78VrjwMXxte2lSllErWGbrwLqkd9ZUDEElSx236Gn6o5mTDaQEe0-GhNGdFvbtJyNy_ekFAtST2RM4uhVGPoXluqnjM2Ba5JZ7n_MoglReWulU5NZyBCDRGD-ANz3HSt-VLqcOGidlG0IXpmz5m1pq6gFsLWZPU8mOf8xb75lfdht3Vi7UbACbi1HccRRGsXVszmalKgRO4GYAa0li118xKpeywHdf9yK8XvlvJDz_LwmbcG9yuL9X7u0c7K7D_ZSpQtlvG7A8Pz2LLxAOzd3LVgkZfL9trb8CakMcVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkKr2gKAPuoWCD9BLFe2u49jOoaqqwgpKQVVbpL2lfkWthJItuwjx0_h3zMTJUkTpjWNkxxnNjO3Pmc8zANsBIQO2hERSniFhhzrRxg0TRKYiV9wKa-mgeHQs90_E53E2XoCr7i4M0Sq7NbFZqH3t6B95H4E97nx5OuyXLSvi6-7ow-RPQgWkKNDaVdOIHnIYLi_w9DZ9f7CLpt7hfLT349N-0hYYSJzgg1lis4EP0nKbZXSZASUTzqP0PtelQjBgKQpXKmmEUZry0ijufSkD7sqyTL1KcdxHsKTSbEhTTI3nZ72M57GerhI6wVOgajn3g1T3q8pUdWRxqtu74R2Ieyc82-x6oxVYbuEq-xj9axUWQvUMnv6VxPA5fGvqahLjqDEyM5VnLQGe1SVDgMli9S16mvyqZ7QeEtne0aLC6H4L-_6bkbju7BLB6un0BZw8iCJfwmJVV-EVMFSm4c5lPKReSCeMsDJwYziCkaC168G7TmOFa9OYUzWN06IJp6e6aPQby2uqHuzMe09i-o57-q13yi_aSTwt5i7Xg615K84-CqmYKtTn00LmKXbgugdr0WI3X9EyEyLHd992JrwZ-V8ivP6vCFvwGP29-HJwfLgOTyJphYhwG7A4OzsPbxAZzexm44MMfj60018DY3sggg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+and+control+of+the+origin+of+photoluminescence+from+Si+nanocrystals&rft.jtitle=Nature+nanotechnology&rft.au=Godefroo%2C+S&rft.au=Hayne%2C+M&rft.au=Jivanescu%2C+M&rft.au=Stesmans%2C+A&rft.date=2008-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=3&rft.issue=3&rft.spage=174&rft_id=info:doi/10.1038%2Fnnano.2008.7&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2373848721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon