Classification and control of the origin of photoluminescence from Si nanocrystals
Silicon dominates the electronics industry, but its poor optical properties mean that III–V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons (do they ari...
Saved in:
Published in | Nature nanotechnology Vol. 3; no. 3; pp. 174 - 178 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2008
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silicon dominates the electronics industry, but its poor optical properties mean that III–V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons (do they arise from highly localized defect states or quantum confinement effects?) has been the subject of intense debate ever since. Attention has subsequently shifted from porous Si to Si nanocrystals, but the same fundamental question about the origin of the photoluminescence has remained. Here we show, based on measurements in high magnetic fields, that defects are the dominant source of light from Si nanocrystals. Moreover, we show that it is possible to control the origin of the photoluminescence in a single sample: passivation with hydrogen removes the defects, resulting in photoluminescence from quantum-confined states, but subsequent ultraviolet illumination reintroduces the defects, making them the origin of the light again. |
---|---|
AbstractList | Silicon dominates the electronics industry, but its poor optical properties mean that III–V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons (do they arise from highly localized defect states or quantum confinement effects?) has been the subject of intense debate ever since. Attention has subsequently shifted from porous Si to Si nanocrystals, but the same fundamental question about the origin of the photoluminescence has remained. Here we show, based on measurements in high magnetic fields, that defects are the dominant source of light from Si nanocrystals. Moreover, we show that it is possible to control the origin of the photoluminescence in a single sample: passivation with hydrogen removes the defects, resulting in photoluminescence from quantum-confined states, but subsequent ultraviolet illumination reintroduces the defects, making them the origin of the light again. Silicon dominates the electronics industry, but its poor optical properties mean that III-V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons (do they arise from highly localized defect states or quantum confinement effects?) has been the subject of intense debate ever since. Attention has subsequently shifted from porous Si to Si nanocrystals, but the same fundamental question about the origin of the photoluminescence has remained. Here we show, based on measurements in high magnetic fields, that defects are the dominant source of light from Si nanocrystals. Moreover, we show that it is possible to control the origin of the photoluminescence in a single sample: passivation with hydrogen removes the defects, resulting in photoluminescence from quantum-confined states, but subsequent ultraviolet illumination reintroduces the defects, making them the origin of the light again.Silicon dominates the electronics industry, but its poor optical properties mean that III-V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons (do they arise from highly localized defect states or quantum confinement effects?) has been the subject of intense debate ever since. Attention has subsequently shifted from porous Si to Si nanocrystals, but the same fundamental question about the origin of the photoluminescence has remained. Here we show, based on measurements in high magnetic fields, that defects are the dominant source of light from Si nanocrystals. Moreover, we show that it is possible to control the origin of the photoluminescence in a single sample: passivation with hydrogen removes the defects, resulting in photoluminescence from quantum-confined states, but subsequent ultraviolet illumination reintroduces the defects, making them the origin of the light again. |
Author | Hayne, M. Jivanescu, M. Stesmans, A. Lebedev, O. I. Godefroo, S. Van Tendeloo, G. Moshchalkov, V. V. Zacharias, M. |
Author_xml | – sequence: 1 givenname: S. surname: Godefroo fullname: Godefroo, S. organization: INPAC-Institute for Nanoscale Physics and Chemistry, Pulsed Field Group, K.U.Leuven – sequence: 2 givenname: M. surname: Hayne fullname: Hayne, M. email: m.hayne@lancaster.ac.uk organization: INPAC-Institute for Nanoscale Physics and Chemistry, Pulsed Field Group, K.U.Leuven, Department of Physics, Lancaster University – sequence: 3 givenname: M. surname: Jivanescu fullname: Jivanescu, M. organization: INPAC-Institute for Nanoscale Physics and Chemistry, Semiconductor Physics Laboratory, K.U.Leuven – sequence: 4 givenname: A. surname: Stesmans fullname: Stesmans, A. organization: INPAC-Institute for Nanoscale Physics and Chemistry, Semiconductor Physics Laboratory, K.U.Leuven – sequence: 5 givenname: M. surname: Zacharias fullname: Zacharias, M. organization: Institute of Microsystems Engineering, Albert Ludwigs University Freiburg – sequence: 6 givenname: O. I. surname: Lebedev fullname: Lebedev, O. I. organization: EMAT, University of Antwerp (RUCA) – sequence: 7 givenname: G. surname: Van Tendeloo fullname: Van Tendeloo, G. organization: EMAT, University of Antwerp (RUCA) – sequence: 8 givenname: V. V. surname: Moshchalkov fullname: Moshchalkov, V. V. organization: INPAC-Institute for Nanoscale Physics and Chemistry, Pulsed Field Group, K.U.Leuven |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18654491$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctLxDAQh4Movm-epXjwZNc8m_Qoiy8QBB_nkKaJRtpkTdKD_72tu7ogepoZ-Gb4mN8e2PTBGwCOEJwhSMS598qHGYZQzPgG2EWcipKQmm3-9ILvgL2U3iBkuMZ0G-wgUTFKa7QLHuadSslZp1V2wRfKt4UOPsfQFcEW-dUUIboX56dp8Rpy6IbeeZO08doUNoa-eHTF5KDjR8qqSwdgy47FHK7qPni-unya35R399e384u7UlMMc9kw2JqqwQ1jXJAKN5Tq1hDU1sJyiFmDRQ0trxRVXCCCEMdtayvDEawsaTnZB6fLu4sY3geTsuzdqNV1ypswJFnVhNYEixE8-QW-hSH60U0KjhgbKTRCxytoaHrTykV0vYof8vtVI3C2BHQMKUVj1wiUUxLyKwk5JSEnO_wL1y5__ThH5br_lsrlUhpv-xcT16Z_8p9tQ5w9 |
CitedBy_id | crossref_primary_10_1134_S1063782614030105 crossref_primary_10_1038_s41377_023_01168_5 crossref_primary_10_1111_ijac_13109 crossref_primary_10_1063_1_3044480 crossref_primary_10_1021_acs_jpcc_5b01137 crossref_primary_10_1002_asia_200900403 crossref_primary_10_1038_nmat2398 crossref_primary_10_1021_acsami_5b02641 crossref_primary_10_1103_PhysRevB_81_245307 crossref_primary_10_1063_1_4901942 crossref_primary_10_1134_S1027451012060092 crossref_primary_10_1149_1_3289734 crossref_primary_10_1002_adfm_201200572 crossref_primary_10_1134_S1995078015050183 crossref_primary_10_1002_anie_201202085 crossref_primary_10_1016_j_matchemphys_2009_06_037 crossref_primary_10_1039_C5CP01371B crossref_primary_10_1103_PhysRevLett_104_103901 crossref_primary_10_1088_1757_899X_490_2_022071 crossref_primary_10_1016_j_tsf_2011_06_020 crossref_primary_10_1002_chem_201804986 crossref_primary_10_1364_OE_20_011487 crossref_primary_10_1039_D3CP03698G crossref_primary_10_1103_PhysRevB_84_075342 crossref_primary_10_1016_j_mee_2016_02_033 crossref_primary_10_1039_C8CP00616D crossref_primary_10_1039_C3CP54570A crossref_primary_10_1088_0957_4484_22_5_055707 crossref_primary_10_1088_0022_3727_44_25_255402 crossref_primary_10_1063_5_0012515 crossref_primary_10_1088_0957_4484_20_13_135203 crossref_primary_10_3390_photonics10040358 crossref_primary_10_1155_2012_572746 crossref_primary_10_1186_s11671_016_1707_z crossref_primary_10_1039_c3nr05960j crossref_primary_10_3390_s17102396 crossref_primary_10_1021_acsabm_9b00264 crossref_primary_10_1103_PhysRevB_80_155332 crossref_primary_10_1103_PhysRevB_83_045308 crossref_primary_10_1088_0256_307X_30_8_087801 crossref_primary_10_1088_0957_4484_20_36_365207 crossref_primary_10_1557_opl_2011_1409 crossref_primary_10_1039_C5NR08470A crossref_primary_10_1186_1556_276X_6_320 crossref_primary_10_1016_j_tsf_2010_12_015 crossref_primary_10_1063_1_3100045 crossref_primary_10_1007_s11664_019_07368_3 crossref_primary_10_4028_www_scientific_net_SSP_156_158_529 crossref_primary_10_1039_c3ta11823a crossref_primary_10_1002_adma_201104578 crossref_primary_10_1038_s41467_024_51591_4 crossref_primary_10_1002_pip_1230 crossref_primary_10_1051_epjap_2013130126 crossref_primary_10_1557_opl_2012_1058 crossref_primary_10_1088_0957_4484_23_10_105401 crossref_primary_10_1021_jp308545q crossref_primary_10_1116_6_0002531 crossref_primary_10_1021_jacs_6b00479 crossref_primary_10_1088_0957_4484_19_45_455704 crossref_primary_10_1002_pssb_202100549 crossref_primary_10_1002_solr_202200995 crossref_primary_10_1016_j_jlumin_2024_120534 crossref_primary_10_1016_j_jlumin_2021_117909 crossref_primary_10_1021_jp1092948 crossref_primary_10_1039_C5NR01031D crossref_primary_10_1007_s00604_019_3494_6 crossref_primary_10_3389_fchem_2021_721454 crossref_primary_10_1016_j_matchemphys_2014_08_016 crossref_primary_10_1088_0953_8984_24_4_045301 crossref_primary_10_1063_1_4824178 crossref_primary_10_1007_s10853_020_05374_z crossref_primary_10_1002_pssb_201700633 crossref_primary_10_3390_nano5020614 crossref_primary_10_1038_srep07372 crossref_primary_10_1021_acs_nanolett_6b01361 crossref_primary_10_1149_2162_8777_acfc65 crossref_primary_10_1088_1361_6463_ab2abc crossref_primary_10_1039_C4CP05126B crossref_primary_10_1021_acs_nanolett_0c03818 crossref_primary_10_1088_1361_6641_ab3536 crossref_primary_10_1039_D4TC01920B crossref_primary_10_1103_PhysRevB_80_165326 crossref_primary_10_1038_nnano_2008_40 crossref_primary_10_1002_smll_201401965 crossref_primary_10_1002_bio_2342 crossref_primary_10_1016_j_pnsc_2014_04_005 crossref_primary_10_1063_1_4764893 crossref_primary_10_1038_s41598_017_18377_9 crossref_primary_10_1016_j_spmi_2014_08_015 crossref_primary_10_1116_1_4892387 crossref_primary_10_1186_s11671_016_1530_6 crossref_primary_10_1364_OE_396654 crossref_primary_10_1063_1_4835095 crossref_primary_10_1016_j_apsusc_2017_11_001 crossref_primary_10_1063_1_4946862 crossref_primary_10_1016_j_jlumin_2014_05_038 crossref_primary_10_1021_acsanm_8b01053 crossref_primary_10_1021_nl400570p crossref_primary_10_1002_pip_2766 crossref_primary_10_1016_j_apsusc_2016_01_076 crossref_primary_10_1063_1_3078281 crossref_primary_10_1016_j_tsf_2011_06_084 crossref_primary_10_1063_1_5026171 crossref_primary_10_1039_C5RA13119G crossref_primary_10_1557_jmr_2012_377 crossref_primary_10_7498_aps_61_217803 crossref_primary_10_1016_j_scriptamat_2009_08_006 crossref_primary_10_1016_j_apsusc_2014_09_123 crossref_primary_10_1038_nnano_2017_153 crossref_primary_10_1039_D2CP00325B crossref_primary_10_3390_ma13194267 crossref_primary_10_7498_aps_59_6473 crossref_primary_10_1007_s10853_013_7819_2 crossref_primary_10_1016_j_mseb_2012_10_015 crossref_primary_10_1088_0957_4484_22_21_215704 crossref_primary_10_1016_j_mseb_2012_10_018 crossref_primary_10_1021_acs_langmuir_2c00891 crossref_primary_10_2184_lsj_42_3_256 crossref_primary_10_1063_1_3602918 crossref_primary_10_1002_adma_201202286 crossref_primary_10_1063_1_3068175 crossref_primary_10_1088_1361_6641_ab63f0 crossref_primary_10_1016_j_ssc_2008_12_023 crossref_primary_10_1103_PhysRevB_82_045302 crossref_primary_10_1103_PhysRevB_88_085424 crossref_primary_10_2497_jjspm_66_145 crossref_primary_10_1038_nnano_2011_167 crossref_primary_10_1088_0022_3727_45_4_045103 crossref_primary_10_1209_0295_5075_96_57006 crossref_primary_10_1103_PhysRevLett_107_206805 crossref_primary_10_1103_PhysRevB_84_165316 crossref_primary_10_1016_j_apsusc_2015_03_112 crossref_primary_10_1002_pssa_201127028 crossref_primary_10_1016_j_solener_2019_04_021 crossref_primary_10_1021_acs_jpcc_6b06197 crossref_primary_10_1016_j_jlumin_2013_09_053 crossref_primary_10_1007_s12274_018_1976_1 crossref_primary_10_1016_j_scriptamat_2013_12_004 crossref_primary_10_1021_jp500576k crossref_primary_10_1088_0953_8984_23_50_505302 crossref_primary_10_1039_C6TC05372F crossref_primary_10_1021_acsnano_5b03268 crossref_primary_10_1063_1_4830280 crossref_primary_10_1134_S199507801802009X crossref_primary_10_1016_j_apsusc_2014_02_047 crossref_primary_10_1016_j_jallcom_2019_06_171 crossref_primary_10_1088_1757_899X_322_2_022049 crossref_primary_10_1021_jp204350u crossref_primary_10_1103_PhysRevB_83_155327 crossref_primary_10_1063_1_4934570 crossref_primary_10_1002_ange_200802230 crossref_primary_10_1016_j_mseb_2012_10_030 crossref_primary_10_1016_j_optmat_2010_04_037 crossref_primary_10_1038_nnano_2010_236 crossref_primary_10_1016_j_mseb_2012_05_016 crossref_primary_10_1103_PhysRevB_91_195317 crossref_primary_10_1088_0957_4484_21_43_435701 crossref_primary_10_1016_j_cplett_2017_02_060 crossref_primary_10_1021_jp2075836 crossref_primary_10_1038_srep12469 crossref_primary_10_1063_1_3476286 crossref_primary_10_1016_j_jlumin_2015_05_020 crossref_primary_10_3103_S8756699024700067 crossref_primary_10_1109_TDMR_2012_2214781 crossref_primary_10_1021_ph500145p crossref_primary_10_1080_1539445X_2010_525198 crossref_primary_10_1016_j_solidstatesciences_2009_05_004 crossref_primary_10_1002_adfm_200801548 crossref_primary_10_1016_j_ssc_2011_07_013 crossref_primary_10_1016_j_jlumin_2011_07_008 crossref_primary_10_1063_1_4747207 crossref_primary_10_1063_1_4895133 crossref_primary_10_1007_s11051_018_4138_1 crossref_primary_10_1063_1_4880722 crossref_primary_10_1016_j_jlumin_2019_01_039 crossref_primary_10_1002_smll_201000841 crossref_primary_10_1088_1367_2630_abafe7 crossref_primary_10_1039_C4NR04688A crossref_primary_10_3390_app7010072 crossref_primary_10_1063_1_3330658 crossref_primary_10_1103_PhysRevLett_132_126402 crossref_primary_10_1021_acs_jpclett_6b00176 crossref_primary_10_1063_1_4869801 crossref_primary_10_1103_PhysRevB_92_035432 crossref_primary_10_1039_c3cp51621k crossref_primary_10_1016_j_jallcom_2017_03_134 crossref_primary_10_1016_j_jlumin_2015_10_029 crossref_primary_10_1002_adma_201101797 crossref_primary_10_1016_j_matlet_2010_02_015 crossref_primary_10_1039_c6pp00212a crossref_primary_10_1016_j_phpro_2012_03_522 crossref_primary_10_1016_j_jallcom_2013_06_066 crossref_primary_10_1016_j_jece_2017_05_023 crossref_primary_10_1016_j_ceramint_2022_04_204 crossref_primary_10_1063_1_4758473 crossref_primary_10_1109_JLT_2008_2004816 crossref_primary_10_1021_acs_langmuir_3c00896 crossref_primary_10_1016_j_cclet_2019_08_034 crossref_primary_10_1063_1_4800823 crossref_primary_10_1002_smll_201000543 crossref_primary_10_1039_C8CC07903J crossref_primary_10_1063_1_4818580 crossref_primary_10_1016_j_optmat_2016_10_060 crossref_primary_10_1039_D0TC01442G crossref_primary_10_1039_C5RA22827A crossref_primary_10_1039_C3TC31994F crossref_primary_10_1063_1_4770375 crossref_primary_10_1038_srep36951 crossref_primary_10_1016_j_apsusc_2011_08_062 crossref_primary_10_1063_1_3657771 crossref_primary_10_1021_ja808827g crossref_primary_10_1088_0256_307X_30_6_067803 crossref_primary_10_1002_adfm_201100784 crossref_primary_10_1016_j_optcom_2010_03_016 crossref_primary_10_1063_1_4729605 crossref_primary_10_1016_j_biomaterials_2024_122743 crossref_primary_10_1063_1_4957219 crossref_primary_10_1039_C4IB00216D crossref_primary_10_1039_c1nr10365b crossref_primary_10_1021_am401313x crossref_primary_10_1021_nl901509k crossref_primary_10_1103_PhysRevB_88_075322 crossref_primary_10_1088_0031_8949_87_03_035701 crossref_primary_10_1103_PhysRevB_79_235332 crossref_primary_10_1021_jp212013a crossref_primary_10_1063_1_4960994 crossref_primary_10_1016_j_apsusc_2011_06_116 crossref_primary_10_1088_1054_660X_25_1_015901 crossref_primary_10_1103_PhysRevLett_104_176803 crossref_primary_10_1016_j_cap_2010_11_112 crossref_primary_10_3390_ma14164423 crossref_primary_10_1103_PhysRevB_89_045428 crossref_primary_10_1002_cnma_201900289 crossref_primary_10_1063_1_3637636 crossref_primary_10_1002_adfm_201400587 crossref_primary_10_1016_j_jnoncrysol_2017_01_044 crossref_primary_10_1063_1_3369041 crossref_primary_10_1016_j_physe_2008_08_046 crossref_primary_10_1021_acs_jpcc_5b08578 crossref_primary_10_1103_PhysRevB_79_235439 crossref_primary_10_5857_RCP_2015_4_3_54 crossref_primary_10_1016_j_mseb_2015_02_013 crossref_primary_10_1063_1_3671671 crossref_primary_10_1007_s11051_019_4575_5 crossref_primary_10_1038_srep16682 crossref_primary_10_1016_j_jlumin_2011_02_006 crossref_primary_10_1016_j_mee_2012_07_095 crossref_primary_10_1021_cm200270d crossref_primary_10_1007_s12598_018_1052_8 crossref_primary_10_1088_2515_7647_abc92c crossref_primary_10_1016_j_apsusc_2012_11_004 crossref_primary_10_1063_1_3224865 crossref_primary_10_1016_j_cap_2017_09_005 crossref_primary_10_1088_1742_6596_2315_1_012002 crossref_primary_10_1063_1_3130103 crossref_primary_10_1002_pssb_201451285 crossref_primary_10_1007_s00339_024_07451_5 crossref_primary_10_1063_1_4790300 crossref_primary_10_1063_1_2999629 crossref_primary_10_1088_2043_6262_3_2_025002 crossref_primary_10_1109_LPT_2015_2495519 crossref_primary_10_1016_j_spmi_2013_04_034 crossref_primary_10_1002_admi_201400359 crossref_primary_10_1038_nphoton_2012_36 crossref_primary_10_1002_anie_200802230 crossref_primary_10_1063_1_4798395 crossref_primary_10_1002_pssa_200881306 crossref_primary_10_1016_j_jlumin_2012_04_007 crossref_primary_10_1088_0022_3727_43_45_455102 crossref_primary_10_1007_s10514_018_9709_6 crossref_primary_10_1016_j_vacuum_2021_110294 crossref_primary_10_1063_1_3556657 crossref_primary_10_1088_0957_4484_21_50_505602 crossref_primary_10_1016_j_chemphys_2012_07_009 crossref_primary_10_1007_s10854_015_3147_4 crossref_primary_10_1063_1_4871980 crossref_primary_10_1063_1_4916637 crossref_primary_10_1021_la3030952 crossref_primary_10_1063_1_3601350 crossref_primary_10_1016_j_matpr_2017_10_202 crossref_primary_10_1021_jp201565z crossref_primary_10_1109_JPROC_2009_2015060 crossref_primary_10_1088_0957_4484_22_33_335703 crossref_primary_10_1063_1_3169513 crossref_primary_10_3390_cryst10050340 crossref_primary_10_1063_1_3055602 crossref_primary_10_1063_1_3204966 crossref_primary_10_1063_1_3520673 crossref_primary_10_1088_1674_1056_20_10_107801 crossref_primary_10_1021_nl903868w crossref_primary_10_1002_admi_201500360 crossref_primary_10_1021_nl901970u crossref_primary_10_1515_nanoph_2022_0206 crossref_primary_10_3390_nano10112100 crossref_primary_10_1007_s11671_010_9707_x crossref_primary_10_1002_advs_201801967 crossref_primary_10_1002_pssa_200925201 crossref_primary_10_1039_C9CP04709C crossref_primary_10_1039_b9nj00342h crossref_primary_10_1088_0957_4484_20_19_195201 crossref_primary_10_1088_1054_660X_24_8_085902 crossref_primary_10_1039_c0cp02647f crossref_primary_10_1038_nnano_2013_271 crossref_primary_10_1002_pssa_201200734 crossref_primary_10_1063_1_4813743 crossref_primary_10_1039_C4CS00486H crossref_primary_10_1063_1_3682537 crossref_primary_10_1107_S2052520619009351 crossref_primary_10_1021_acs_jpclett_8b02154 crossref_primary_10_1016_j_jallcom_2014_10_109 crossref_primary_10_1021_nn101022b crossref_primary_10_1021_nl8021016 crossref_primary_10_1103_PhysRevB_82_085320 crossref_primary_10_1063_1_4824646 crossref_primary_10_1016_j_physe_2021_114680 crossref_primary_10_1016_j_physe_2008_08_021 crossref_primary_10_1016_j_physe_2008_08_022 crossref_primary_10_1002_adma_201601173 crossref_primary_10_1021_jp301713v crossref_primary_10_1007_s11051_012_1097_9 crossref_primary_10_1016_j_jnoncrysol_2011_06_027 crossref_primary_10_1063_1_3553583 crossref_primary_10_1088_0957_4484_25_26_265703 crossref_primary_10_1021_ja202466m crossref_primary_10_1109_JPHOT_2016_2600373 crossref_primary_10_1021_acs_jpcc_9b06932 crossref_primary_10_1016_j_apsusc_2014_01_041 crossref_primary_10_1063_1_4905671 crossref_primary_10_1002_pssa_201200957 crossref_primary_10_1088_0022_3727_48_44_445302 crossref_primary_10_1063_1_3701696 crossref_primary_10_1002_pssa_201800565 crossref_primary_10_1002_pssa_201700718 crossref_primary_10_1039_D2TC02352K crossref_primary_10_1038_srep06131 crossref_primary_10_1103_PhysRevB_86_125302 crossref_primary_10_1364_OME_2_000501 crossref_primary_10_35848_1347_4065_abdf16 crossref_primary_10_1016_j_solmat_2013_03_011 crossref_primary_10_1002_adma_201200539 crossref_primary_10_1088_0957_4484_23_47_475709 crossref_primary_10_1007_s12274_018_2217_3 crossref_primary_10_1039_C4NR00796D crossref_primary_10_1063_1_2966690 crossref_primary_10_1143_APEX_5_035802 crossref_primary_10_1063_1_5116778 crossref_primary_10_1016_j_jcis_2011_03_006 crossref_primary_10_1088_1361_6463_aa7196 crossref_primary_10_1021_acsnano_4c01150 crossref_primary_10_1088_0957_4484_26_29_295201 crossref_primary_10_1088_0957_4484_20_31_315704 crossref_primary_10_1016_j_electacta_2015_04_155 crossref_primary_10_1016_j_physe_2013_08_003 crossref_primary_10_1142_S1793292021501150 crossref_primary_10_1002_ange_201202085 crossref_primary_10_1038_nmat2413 crossref_primary_10_1021_nl301787g crossref_primary_10_1016_j_spmi_2016_06_006 crossref_primary_10_1039_C8NR01552J crossref_primary_10_1063_1_3021414 crossref_primary_10_1039_c3tc30571f crossref_primary_10_1002_adpr_202100083 crossref_primary_10_1088_0957_4484_23_39_395205 crossref_primary_10_1021_acsphotonics_0c01846 crossref_primary_10_1063_1_3648108 crossref_primary_10_1088_1361_6528_aae67c crossref_primary_10_1021_la3042082 crossref_primary_10_1088_0022_3727_42_11_113001 crossref_primary_10_1557_jmr_2019_114 crossref_primary_10_1209_0295_5075_96_27003 crossref_primary_10_1016_j_jlumin_2020_117845 crossref_primary_10_1103_PhysRevB_84_125326 crossref_primary_10_1063_1_3127228 crossref_primary_10_1063_1_3614585 crossref_primary_10_1063_1_3064124 crossref_primary_10_1557_jmr_2012_295 crossref_primary_10_1021_jp511660h crossref_primary_10_1149_1_3074295 crossref_primary_10_1007_s12200_012_0185_x crossref_primary_10_1002_adfm_202411981 crossref_primary_10_1038_lsa_2013_3 crossref_primary_10_1088_0957_4484_22_30_305605 crossref_primary_10_1063_1_4918588 crossref_primary_10_1103_PhysRevMaterials_1_051601 crossref_primary_10_1186_1556_276X_6_612 crossref_primary_10_1038_nmat2595 crossref_primary_10_1021_am300519a crossref_primary_10_1103_PhysRevB_86_075312 crossref_primary_10_1063_1_3517091 crossref_primary_10_1142_S1793292021501125 crossref_primary_10_1016_j_tsf_2009_01_060 crossref_primary_10_1002_sstr_202000049 crossref_primary_10_1103_PhysRevB_84_195317 crossref_primary_10_1142_S2010194514601471 crossref_primary_10_1557_PROC_1260_T06_05 crossref_primary_10_1007_s11051_013_2063_x crossref_primary_10_1063_1_3224952 crossref_primary_10_1039_D3NR04478E crossref_primary_10_1016_j_vacuum_2015_06_007 crossref_primary_10_1063_1_4931670 crossref_primary_10_1134_S1063782611050034 crossref_primary_10_1039_C9TB01042D crossref_primary_10_1103_PhysRevB_80_205323 crossref_primary_10_1063_1_4826513 crossref_primary_10_3390_nano9010055 crossref_primary_10_1063_1_3388176 crossref_primary_10_1021_ja2048804 crossref_primary_10_1109_JLT_2010_2042788 crossref_primary_10_1038_srep09932 crossref_primary_10_1088_0022_3727_48_45_455103 crossref_primary_10_1155_2012_872576 crossref_primary_10_7498_aps_59_8915 crossref_primary_10_1039_b902029b crossref_primary_10_1063_1_3556449 crossref_primary_10_1021_acsaem_0c03163 crossref_primary_10_1039_b902671a crossref_primary_10_1007_s12633_019_00168_8 crossref_primary_10_1038_s41598_020_72990_9 crossref_primary_10_1364_OE_21_023416 crossref_primary_10_1002_pssa_201532528 crossref_primary_10_1016_j_jallcom_2015_03_104 crossref_primary_10_1021_acsami_6b16505 crossref_primary_10_1088_0957_4484_22_23_235307 crossref_primary_10_1039_c2nr30626c crossref_primary_10_1364_OE_22_00A276 crossref_primary_10_1088_0957_4484_27_36_365601 crossref_primary_10_1103_PhysRevB_87_165441 crossref_primary_10_1103_PhysRevB_82_165411 crossref_primary_10_1021_jp102017d crossref_primary_10_1063_1_4939017 crossref_primary_10_1088_0953_8984_26_17_173201 crossref_primary_10_1039_b919412f crossref_primary_10_1002_pssa_201228309 crossref_primary_10_1021_acsphotonics_7b00188 crossref_primary_10_1038_lsa_2015_18 crossref_primary_10_1049_mnl_2013_0119 |
Cites_doi | 10.1103/PhysRevB.62.10324 10.1103/PhysRevB.48.11024 10.1063/1.103561 10.1038/nmat1307 10.1103/PhysRevLett.61.444 10.1063/1.1433906 10.1016/j.physe.2006.12.009 10.1103/PhysRevLett.82.197 10.1016/j.physb.2004.01.119 10.1103/PhysRevB.50.5204 10.1063/1.104512 10.1038/35044012 10.1016/0079-6816(83)90006-0 10.1149/1.2069318 10.1063/1.1525051 10.1103/PhysRevLett.88.097401 10.1063/1.367005 10.1063/1.1498960 10.1103/PhysRevLett.79.1770 10.1103/PhysRevB.69.195309 10.1103/PhysRevB.72.195313 10.1038/35059301 10.1002/adma.200401126 10.1016/0022-2313(96)82860-2 10.1063/1.356486 10.1103/PhysRevLett.94.087405 10.1103/PhysRevLett.93.226104 10.1103/PhysRevB.47.1397 10.1103/PhysRevB.58.15801 10.1103/PhysRevB.57.9088 10.1063/1.116085 10.1063/1.2193810 10.1088/0953-8984/18/1/L01 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2008 Copyright Nature Publishing Group Mar 2008 |
Copyright_xml | – notice: Springer Nature Limited 2008 – notice: Copyright Nature Publishing Group Mar 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/nnano.2008.7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 178 |
ExternalDocumentID | 2373848721 18654491 10_1038_nnano_2008_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c420t-b50de6b2b5578362b44cde31d98f7025b2890f76a4a78131172ddf6e7106f3d73 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri Jul 11 10:15:38 EDT 2025 Fri Jul 25 09:10:44 EDT 2025 Mon Jul 21 06:01:43 EDT 2025 Tue Jul 01 01:25:21 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Fri Feb 21 02:40:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-b50de6b2b5578362b44cde31d98f7025b2890f76a4a78131172ddf6e7106f3d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 18654491 |
PQID | 871554931 |
PQPubID | 546299 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_69349328 proquest_journals_871554931 pubmed_primary_18654491 crossref_primary_10_1038_nnano_2008_7 crossref_citationtrail_10_1038_nnano_2008_7 springer_journals_10_1038_nnano_2008_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-03-01 |
PublicationDateYYYYMMDD | 2008-03-01 |
PublicationDate_xml | – month: 03 year: 2008 text: 2008-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nature Nanotech |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2008 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Sychugov, Juhasz, Valenta, Linnros (CR31) 2005; 94 Stesmans, Nouwen, Afanas'ev (CR24) 1998; 58 Walters, Bourianoff, Atwater (CR13) 2005; 4 Canham (CR2) 1990; 57 Ball (CR1) 2001; 409 Zimina (CR22) 2006; 88 Fauchet (CR4) 1996; 70 Wolkin (CR5) 1999; 82 Walck, Reinecke (CR29) 1998; 57 Ogüt, Chelikowsky, Louie (CR17) 1997; 79 Hayne (CR19) 2004; 346–347 Puzder, Williamson, Grossman, Galli (CR9) 2002; 88 Stesmans, Scheerlinck (CR26) 1994; 75 Stesmans, Afanas'ev (CR23) 1998; 83 Warren, Poindexter, Offenberg, Müller-Warmuth (CR25) 1992; 139 Hadjisavvas, Kelires (CR6) 2007; 38 Hadjisavvas, Kelires (CR10) 2004; 93 Abtew, Drabold (CR34) 2006; 18 Tiwari (CR14) 1996; 68 Tsai, Griscom, Friebele (CR28) 1988; 61 Davies (CR33) 1998 Heitmann (CR30) 2004; 69 Lehmann, Gösele (CR3) 1991; 58 Yi, Heitmann, Scholz, Zacharias (CR32) 2002; 81 Zacharias (CR21) 2002; 80 Pavesi, Dal Negro, Mazzoleni, Franzo, Priolo (CR12) 2000; 408 Hayne (CR18) 2000; 62 Stesmans, Scheerlinck (CR27) 1994; 50 Delerue, Allan, Lannoo (CR15) 1993; 48 Poindexter, Caplan (CR20) 1983; 14 Heitmann, Müller, Zacharias, Gösele (CR7) 2005; 17 Averboukh (CR8) 2002; 92 Delley, Steigmeier (CR16) 1993; 47 Wang (CR11) 2005; 72 P Ball (BFnnano20087_CR1) 2001; 409 XX Wang (BFnnano20087_CR11) 2005; 72 G Hadjisavvas (BFnnano20087_CR6) 2007; 38 B Delley (BFnnano20087_CR16) 1993; 47 MV Wolkin (BFnnano20087_CR5) 1999; 82 V Lehmann (BFnnano20087_CR3) 1991; 58 JH Davies (BFnnano20087_CR33) 1998 M Zacharias (BFnnano20087_CR21) 2002; 80 A Stesmans (BFnnano20087_CR24) 1998; 58 J Heitmann (BFnnano20087_CR30) 2004; 69 A Zimina (BFnnano20087_CR22) 2006; 88 G Hadjisavvas (BFnnano20087_CR10) 2004; 93 M Hayne (BFnnano20087_CR19) 2004; 346–347 A Stesmans (BFnnano20087_CR23) 1998; 83 A Puzder (BFnnano20087_CR9) 2002; 88 WL Warren (BFnnano20087_CR25) 1992; 139 LT Canham (BFnnano20087_CR2) 1990; 57 TE Tsai (BFnnano20087_CR28) 1988; 61 M Hayne (BFnnano20087_CR18) 2000; 62 PM Fauchet (BFnnano20087_CR4) 1996; 70 TA Abtew (BFnnano20087_CR34) 2006; 18 C Delerue (BFnnano20087_CR15) 1993; 48 B Averboukh (BFnnano20087_CR8) 2002; 92 A Stesmans (BFnnano20087_CR27) 1994; 50 EH Poindexter (BFnnano20087_CR20) 1983; 14 RJ Walters (BFnnano20087_CR13) 2005; 4 A Stesmans (BFnnano20087_CR26) 1994; 75 J Heitmann (BFnnano20087_CR7) 2005; 17 S Ogüt (BFnnano20087_CR17) 1997; 79 L Pavesi (BFnnano20087_CR12) 2000; 408 SN Walck (BFnnano20087_CR29) 1998; 57 I Sychugov (BFnnano20087_CR31) 2005; 94 S Tiwari (BFnnano20087_CR14) 1996; 68 LX Yi (BFnnano20087_CR32) 2002; 81 18654483 - Nat Nanotechnol. 2008 Mar;3(3):134-5 |
References_xml | – volume: 62 start-page: 10324 year: 2000 end-page: 10328 ident: CR18 article-title: Electron and hole confinement in stacked self-assembled InP quantum dots publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.10324 – volume: 48 start-page: 11024 year: 1993 end-page: 11036 ident: CR15 article-title: Theoretical aspects of the luminescence of porous silicon publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.11024 – volume: 57 start-page: 1046 year: 1990 end-page: 1048 ident: CR2 article-title: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers publication-title: Appl. Phys. Lett. doi: 10.1063/1.103561 – volume: 4 start-page: 143 year: 2005 end-page: 146 ident: CR13 article-title: Field-effect electroluminescence in silicon nanocrystals publication-title: Nature Mater. doi: 10.1038/nmat1307 – volume: 61 start-page: 444 year: 1988 end-page: 446 ident: CR28 article-title: Mechanism of intrinsic Si E'-center photogeneration in high-purity silica publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.444 – volume: 80 start-page: 661 year: 2002 end-page: 663 ident: CR21 article-title: Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO superlattice approach publication-title: Appl. Phys. Lett. doi: 10.1063/1.1433906 – volume: 38 start-page: 99 year: 2007 end-page: 105 ident: CR6 article-title: Theory of interface structure, energetics, and electronic properties of embedded Si/a-SiO nanocrystals publication-title: Physica E doi: 10.1016/j.physe.2006.12.009 – volume: 82 start-page: 197 year: 1999 end-page: 200 ident: CR5 article-title: Electronic states and luminescence in porous Si: The role of oxygen publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.197 – volume: 346–347 start-page: 421 year: 2004 end-page: 427 ident: CR19 article-title: Pulsed magnetic fields as probe of self-assembled semiconductor nanostructures publication-title: Physica B doi: 10.1016/j.physb.2004.01.119 – volume: 50 start-page: 5204 year: 1994 end-page: 5212 ident: CR27 article-title: Natural intrinsic EX center in thermal SiO on Si: O hyperfine interaction publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.5204 – volume: 58 start-page: 856 year: 1991 end-page: 858 ident: CR3 article-title: Porous Si formation: A quantum wire effect publication-title: Appl. Phys. Lett. doi: 10.1063/1.104512 – volume: 408 start-page: 440 year: 2000 end-page: 444 ident: CR12 article-title: Optical gain in silicon nanocrystals publication-title: Nature doi: 10.1038/35044012 – volume: 14 start-page: 201 year: 1983 end-page: 294 ident: CR20 article-title: Characterization of Si/SiO interface defects by electron spin resonance publication-title: Prog. Surf. Sci. doi: 10.1016/0079-6816(83)90006-0 – volume: 139 start-page: 872 year: 1992 end-page: 880 ident: CR25 article-title: Paramagnetic point defects in amorphous silicon dioxide and amorphous silicon nitride thin films publication-title: J. Electrochem. Soc. doi: 10.1149/1.2069318 – volume: 81 start-page: 4248 year: 2002 end-page: 4250 ident: CR32 article-title: Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiO layers publication-title: Appl. Phys. Lett. doi: 10.1063/1.1525051 – volume: 88 start-page: 097401 year: 2002 ident: CR9 article-title: Surface chemistry of silicon nanoclusters publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.097401 – volume: 83 start-page: 2449 year: 1998 end-page: 2457 ident: CR23 article-title: Electron spin resonance features of interface defects in thermal (100)Si/SiO publication-title: J. Appl. Phys. doi: 10.1063/1.367005 – volume: 92 start-page: 3564 year: 2002 end-page: 3568 ident: CR8 article-title: Luminescence studies of a Si/SiO superlattice publication-title: J. Appl. Phys. doi: 10.1063/1.1498960 – volume: 79 start-page: 1770 year: 1997 end-page: 1773 ident: CR17 article-title: Quantum confinement and optical gaps in Si nanocrystals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.1770 – volume: 69 start-page: 195309 year: 2004 ident: CR30 article-title: Excitons in Si nanocrystals: Confinement and migration effects publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.195309 – volume: 72 start-page: 195313 year: 2005 ident: CR11 article-title: Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO matrix publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.195313 – volume: 409 start-page: 974 year: 2001 end-page: 976 ident: CR1 article-title: Let there be light publication-title: Nature doi: 10.1038/35059301 – year: 1998 ident: CR33 publication-title: The Physics of Low-Dimensional Semiconductors – volume: 17 start-page: 795 year: 2005 end-page: 803 ident: CR7 article-title: Silicon nanocrystals: Size matters publication-title: Adv. Mater doi: 10.1002/adma.200401126 – volume: 70 start-page: 294 year: 1996 end-page: 309 ident: CR4 article-title: Photoluminescence and electroluminescence from porous silicon publication-title: J. Lumin. doi: 10.1016/0022-2313(96)82860-2 – volume: 75 start-page: 1047 year: 1994 end-page: 1058 ident: CR26 article-title: Generation aspects of the delocalized intrinsic EX defect in thermal SiO publication-title: J. Appl. Phys. doi: 10.1063/1.356486 – volume: 94 start-page: 087405 year: 2005 ident: CR31 article-title: Narrow luminescence linewidth of a silicon quantum dot publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.087405 – volume: 93 start-page: 226104 year: 2004 ident: CR10 article-title: Structure and energetics of Si nanocrystals embedded in ‐SiO publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.226104 – volume: 47 start-page: 1397 year: 1993 end-page: 1400 ident: CR16 article-title: Quantum confinement in Si nanocrystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1397 – volume: 58 start-page: 15801 year: 1998 end-page: 15809 ident: CR24 article-title: P interface defect in thermal (100)Si/SiO : Si hyperfine interaction publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.15801 – volume: 57 start-page: 9088 year: 1998 end-page: 9096 ident: CR29 article-title: Exciton diamagnetic shift in semiconductor nanostrucures publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.9088 – volume: 68 start-page: 1377 year: 1996 end-page: 1379 ident: CR14 article-title: A silicon nanocrystal based memory publication-title: Appl. Phys. Lett. doi: 10.1063/1.116085 – volume: 88 start-page: 163103 year: 2006 ident: CR22 article-title: Electronic structure and chemical environment of silicon nanoclusters embedded in a silicon dioxide matrix publication-title: Appl. Phys. Lett. doi: 10.1063/1.2193810 – volume: 18 start-page: L1 year: 2006 end-page: L6 ident: CR34 article-title: Atomistic simulation of light-induced changes in hydrogenated amorphous Si publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/18/1/L01 – volume: 139 start-page: 872 year: 1992 ident: BFnnano20087_CR25 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2069318 – volume: 14 start-page: 201 year: 1983 ident: BFnnano20087_CR20 publication-title: Prog. Surf. Sci. doi: 10.1016/0079-6816(83)90006-0 – volume: 58 start-page: 856 year: 1991 ident: BFnnano20087_CR3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.104512 – volume: 346–347 start-page: 421 year: 2004 ident: BFnnano20087_CR19 publication-title: Physica B doi: 10.1016/j.physb.2004.01.119 – volume: 17 start-page: 795 year: 2005 ident: BFnnano20087_CR7 publication-title: Adv. Mater doi: 10.1002/adma.200401126 – volume: 69 start-page: 195309 year: 2004 ident: BFnnano20087_CR30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.195309 – volume: 82 start-page: 197 year: 1999 ident: BFnnano20087_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.197 – volume: 4 start-page: 143 year: 2005 ident: BFnnano20087_CR13 publication-title: Nature Mater. doi: 10.1038/nmat1307 – volume: 38 start-page: 99 year: 2007 ident: BFnnano20087_CR6 publication-title: Physica E doi: 10.1016/j.physe.2006.12.009 – volume: 88 start-page: 163103 year: 2006 ident: BFnnano20087_CR22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2193810 – volume: 83 start-page: 2449 year: 1998 ident: BFnnano20087_CR23 publication-title: J. Appl. Phys. doi: 10.1063/1.367005 – volume-title: The Physics of Low-Dimensional Semiconductors year: 1998 ident: BFnnano20087_CR33 – volume: 79 start-page: 1770 year: 1997 ident: BFnnano20087_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.1770 – volume: 72 start-page: 195313 year: 2005 ident: BFnnano20087_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.195313 – volume: 88 start-page: 097401 year: 2002 ident: BFnnano20087_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.097401 – volume: 61 start-page: 444 year: 1988 ident: BFnnano20087_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.444 – volume: 93 start-page: 226104 year: 2004 ident: BFnnano20087_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.226104 – volume: 62 start-page: 10324 year: 2000 ident: BFnnano20087_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.10324 – volume: 18 start-page: L1 year: 2006 ident: BFnnano20087_CR34 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/18/1/L01 – volume: 75 start-page: 1047 year: 1994 ident: BFnnano20087_CR26 publication-title: J. Appl. Phys. doi: 10.1063/1.356486 – volume: 80 start-page: 661 year: 2002 ident: BFnnano20087_CR21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1433906 – volume: 50 start-page: 5204 year: 1994 ident: BFnnano20087_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.5204 – volume: 57 start-page: 9088 year: 1998 ident: BFnnano20087_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.9088 – volume: 409 start-page: 974 year: 2001 ident: BFnnano20087_CR1 publication-title: Nature doi: 10.1038/35059301 – volume: 70 start-page: 294 year: 1996 ident: BFnnano20087_CR4 publication-title: J. Lumin. doi: 10.1016/0022-2313(96)82860-2 – volume: 408 start-page: 440 year: 2000 ident: BFnnano20087_CR12 publication-title: Nature doi: 10.1038/35044012 – volume: 57 start-page: 1046 year: 1990 ident: BFnnano20087_CR2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.103561 – volume: 68 start-page: 1377 year: 1996 ident: BFnnano20087_CR14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.116085 – volume: 58 start-page: 15801 year: 1998 ident: BFnnano20087_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.15801 – volume: 48 start-page: 11024 year: 1993 ident: BFnnano20087_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.11024 – volume: 47 start-page: 1397 year: 1993 ident: BFnnano20087_CR16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1397 – volume: 92 start-page: 3564 year: 2002 ident: BFnnano20087_CR8 publication-title: J. Appl. Phys. doi: 10.1063/1.1498960 – volume: 81 start-page: 4248 year: 2002 ident: BFnnano20087_CR32 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1525051 – volume: 94 start-page: 087405 year: 2005 ident: BFnnano20087_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.087405 – reference: 18654483 - Nat Nanotechnol. 2008 Mar;3(3):134-5 |
SSID | ssj0052924 |
Score | 2.469308 |
Snippet | Silicon dominates the electronics industry, but its poor optical properties mean that III–V compound semiconductors are preferred for photonics applications.... Silicon dominates the electronics industry, but its poor optical properties mean that III-V compound semiconductors are preferred for photonics applications.... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 174 |
SubjectTerms | Chemistry and Materials Science Crystallization - methods Electronics industry Hydrogen - chemistry Luminescent Measurements - methods Macromolecular Substances - chemistry Magnetic fields Magnetics Materials Science Materials Testing Molecular Conformation Nanocrystals Nanostructures - chemistry Nanostructures - radiation effects Nanotechnology Nanotechnology - methods Nanotechnology and Microengineering Optical properties Particle Size Scattering, Radiation Silicon Silicon - chemistry Surface Properties Wavelengths |
Title | Classification and control of the origin of photoluminescence from Si nanocrystals |
URI | https://link.springer.com/article/10.1038/nnano.2008.7 https://www.ncbi.nlm.nih.gov/pubmed/18654491 https://www.proquest.com/docview/871554931 https://www.proquest.com/docview/69349328 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFH6C9gKHiV8bXWH4AFxQtNZxbOeEAK1USExorFJvkX9FQ6qSrmkP--95L3HboQKXSJGdxHovtj_7fX4fwNuAkAFLQiIpz5CwY51o48YJIlORK26FtbRQ_H4ppzPxbZ7NIzenibTK7ZjYDtS-drRHfo7AHme-PB1_XN4mJBpFwdWooPEQ-pS5jBhdar5bb2U87zRtldAJrsRU5L2PUn1eVaaqOyal-nNGOoCZByHSduaZPIGjCBnZp87HT-FBqJ7B43uJBJ_DVattSayf1tDMVJ5FEjqrS4Ygj3UKWHS3vKnXNCYR4d1Rx2Z0xoT9_MWouW51h4Bx0byA2eTi-ss0iWoJiRN8tE5sNvJBWm6zjE5moJmF8-gKn-tSIbKxFFIslTTCKE1JdhT3vpQBIYYsU6_SY-hVdRVeAlNpZrhzGQ-pF9IJI6wM3BiOgCBo7QbwYWuxwsVU4qRosSjakHaqi9a-ncSlGsC7Xe1ll0LjH_WGW-MXsSM1xc7tA3izK8UeQGENU4V60xQyT7EC1wM46Ty2_4qWmRA5Pvt-68L9m__WhNP_NmEIjzq2CDHQXkFvvdqE1whJ1vas_fHwqidfz6D_-eLyx9VvmEbjQA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOVXmVpYX6QLmgqLu2YzsHhBCwbOnjAK3UW_ArAqlKlu5WVX9U_2Nn4mQLKnDrMbLjjGbGM58z4xmAVxEhA47ETFGdIelGJjPWjzJEprLQ3Enn6KC4f6AmR_LLcX68BJf9XRhKq-xtYmuoQ-PpH_k2Anv0fIUYvZv-yqhpFAVX-w4aSSt248U5nthmb3c-oni3OB9_OvwwybqmApmXfDjPXD4MUTnu8pwuMCA10gekOBSm0ggAHEXeKq2stNpQLRrNQ6hURE-sKhG0wHXvwF0pREEbyow_94Y_50XqoaulyfDkp7s8-6Ew23Vt6yZlbuo_PeANWHsjJNt6uvEqrHQQlb1POvUQlmL9CB78VrjwMXxte2lSllErWGbrwLqkd9ZUDEElSx236Gn6o5mTDaQEe0-GhNGdFvbtJyNy_ekFAtST2RM4uhVGPoXluqnjM2Ba5JZ7n_MoglReWulU5NZyBCDRGD-ANz3HSt-VLqcOGidlG0IXpmz5m1pq6gFsLWZPU8mOf8xb75lfdht3Vi7UbACbi1HccRRGsXVszmalKgRO4GYAa0li118xKpeywHdf9yK8XvlvJDz_LwmbcG9yuL9X7u0c7K7D_ZSpQtlvG7A8Pz2LLxAOzd3LVgkZfL9trb8CakMcVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkKr2gKAPuoWCD9BLFe2u49jOoaqqwgpKQVVbpL2lfkWthJItuwjx0_h3zMTJUkTpjWNkxxnNjO3Pmc8zANsBIQO2hERSniFhhzrRxg0TRKYiV9wKa-mgeHQs90_E53E2XoCr7i4M0Sq7NbFZqH3t6B95H4E97nx5OuyXLSvi6-7ow-RPQgWkKNDaVdOIHnIYLi_w9DZ9f7CLpt7hfLT349N-0hYYSJzgg1lis4EP0nKbZXSZASUTzqP0PtelQjBgKQpXKmmEUZry0ijufSkD7sqyTL1KcdxHsKTSbEhTTI3nZ72M57GerhI6wVOgajn3g1T3q8pUdWRxqtu74R2Ieyc82-x6oxVYbuEq-xj9axUWQvUMnv6VxPA5fGvqahLjqDEyM5VnLQGe1SVDgMli9S16mvyqZ7QeEtne0aLC6H4L-_6bkbju7BLB6un0BZw8iCJfwmJVV-EVMFSm4c5lPKReSCeMsDJwYziCkaC168G7TmOFa9OYUzWN06IJp6e6aPQby2uqHuzMe09i-o57-q13yi_aSTwt5i7Xg615K84-CqmYKtTn00LmKXbgugdr0WI3X9EyEyLHd992JrwZ-V8ivP6vCFvwGP29-HJwfLgOTyJphYhwG7A4OzsPbxAZzexm44MMfj60018DY3sggg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+and+control+of+the+origin+of+photoluminescence+from+Si+nanocrystals&rft.jtitle=Nature+nanotechnology&rft.au=Godefroo%2C+S&rft.au=Hayne%2C+M&rft.au=Jivanescu%2C+M&rft.au=Stesmans%2C+A&rft.date=2008-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=3&rft.issue=3&rft.spage=174&rft_id=info:doi/10.1038%2Fnnano.2008.7&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2373848721 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |