Protective effects of neurotrophin-4/5 and transforming growth factor- α on striatal neuronal phenotypic degeneration after excitotoxic lesioning with quinolinic acid

Lesioning of the mammalian striatum with the excitotoxin quinolinic acid results in a pattern of neuropathology that resembles that of post mortem Huntington's disease brain. Certain neurotrophic factors can rescue degenerating cells in a variety of lesion types, including those produced by neu...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 78; no. 1; pp. 73 - 86
Main Authors Alexi, T, Venero, J.L, Hefti, F
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.05.1997
Elsevier
Subjects
Rat
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lesioning of the mammalian striatum with the excitotoxin quinolinic acid results in a pattern of neuropathology that resembles that of post mortem Huntington's disease brain. Certain neurotrophic factors can rescue degenerating cells in a variety of lesion types, including those produced by neurotoxins. Several neurotrophic factors promote the survival of striatal neurons and/or are localized within the striatum. Of these factors, neurotrophin-4/5 and transforming growth factor- α were chosen for administration to rats lesioned with quinolinic acid. Adult rats received a single unilateral intrastriatal injection of quinolinic acid (120 nmol) and either trophic factors or the control protein cytochrome c for seven days thereafter. The pattern of phenotypic degeneration was assessed by immunocytochemical labeling of various striatal neuronal populations at five rostrocaudal levels. Quinolinic acid produced a preferential loss in the number of cells immunoreactive for glutamate decarboxylase, with a relative sparing of the number of choline acetyltransferase-immunoreactive cells and, to a lesser degree, calretinin-immunoreactive cells. None of these phenotypic populations was protected by either neurotrophin-4/5 or transforming growth factor- α. In contrast, when glutamate decarboxylase cells were alternatively identified by calbindin immunolabeling, both factors were found to have partially reversed the loss in the number of calbindin-positive cells induced by excitolesioning. In addition, the loss in the number of parvalbumin-immunopositive cells due to quinolinic acid was partially reversed by neurotrophin-4/5, while the loss in the number of NADPH-diaphorase-stained cells was partially reversed by transforming growth factor- α. These findings reveal a new population of striatal cells, calretinin neurons, that are relatively resistant to quinolinic acid toxicity and that neurotrophin-4/5 and transforming growth factor- α partially protect against the phenotypic degeneration of striatal cell populations in an in vivo animal model of Huntington's disease.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0306-4522
1873-7544
DOI:10.1016/S0306-4522(97)83046-1