The impact of diet and arginine supplementation on pancreatic mass, digestive enzyme activity, and insulin-containing cell cluster morphology during the estrous cycle in sheep

To determine the effect of feed intake and arginine treatment during different stages of the estrous cycle on pancreatic mass, digestive enzyme activity, and histological measurements, ewes (n = 120) were randomly allocated to 1 of 3 dietary groups; control (CON; 2.14-Mcal metabolizable energy/kg),...

Full description

Saved in:
Bibliographic Details
Published inDomestic animal endocrinology Vol. 59; pp. 23 - 29
Main Authors Keomanivong, F.E., Grazul-Bilska, A.T., Redmer, D.A., Bass, C.S., Kaminski, S.L., Borowicz, P.P., Kirsch, J.D., Swanson, K.C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To determine the effect of feed intake and arginine treatment during different stages of the estrous cycle on pancreatic mass, digestive enzyme activity, and histological measurements, ewes (n = 120) were randomly allocated to 1 of 3 dietary groups; control (CON; 2.14-Mcal metabolizable energy/kg), underfed (UF; 0.6 × CON), or overfed (OF; 2 × CON) over 2 yr. Estrus was synchronized using a controlled internal drug release device for 14 d. At controlled internal drug release withdrawal, ewes from each dietary group were assigned to 1 of 2 treatments; Arg (L-Arg HCl, 155-μmol/kg BW) or Sal (approximately 10-mL saline). Treatments were administered 3 times daily via jugular catheter and continued until slaughter on d (day) 5 and 10 of the second estrus cycle (early luteal phase, n = 41 and mid-luteal phase, n = 39; yr 1) and d 15 of the first estrus cycle (late luteal phase, n = 40; yr 2). A blood sample collected from jugular catheters for serum insulin analysis before slaughter. The pancreas was then removed, trimmed of mesentery and fat, weighed, and a sample snap-frozen until enzyme analysis. Additional pancreatic samples were fixed in 10% formalin solution for histological examination of size and distribution of insulin-containing cell clusters. Data were analyzed as a completely randomized design with a factorial arrangement of treatments. Diet, treatment, and diet × treatment were blocked by yr and included in the model with initial BW used as a covariate. Day of the estrous cycle was initially included in the model but later removed as no effects (P > 0.10) were observed for any pancreatic variables tested. Overfed ewes had the greatest (P < 0.001) change in BW, final BW, change in BCS, and final BCS. A diet × treatment interaction was observed for change in BW and final BW (P ≤ 0.004). Overfed and CON had increased (P < 0.001) pancreas weight (g) compared with UF ewes. Protein concentration (g/pancreas) was the lowest (P < 0.001) in UF ewes, whereas protein content (mg/kg BW) was greater (P = 0.03) in UF than OF ewes. Activity of α-amylase (U/g, kU/pancreas, U/kg of BW, and U/g protein) and trypsin (U/pancreas) was greater (P ≤ 0.003) in OF than UF ewes. Serum insulin was the greatest (P < 0.001) in OF ewes. No effects were observed for pancreatic insulin-containing cell clusters. This study demonstrated that plane of nutrition affected several measurements of pancreatic function; however, the dosage of Arg used did not influence pancreatic function. •Pancreatic digestive enzymes and serum insulin increased with increased feed intake.•Pancreatic insulin-containing clusters were not influenced by feed intake.•Arginine treatment had minimal effects on pancreatic function.•Arginine did not rescue nutritionally induced reduction in pancreatic function.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0739-7240
1879-0054
DOI:10.1016/j.domaniend.2016.10.001