Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance

Phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase activity and production of siderophores and indole acetic acid (IAA) are well-known traits of plant growth-promoting rhizobacteria (PGPR). Here we investigated the expression of these traits as affected by salinity for t...

Full description

Saved in:
Bibliographic Details
Published inArchives of microbiology Vol. 198; no. 4; pp. 379 - 387
Main Authors Nadeem, Sajid Mahmood, Ahmad, Maqshoof, Naveed, Muhammad, Imran, Muhammad, Zahir, Zahir Ahmad, Crowley, David E.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase activity and production of siderophores and indole acetic acid (IAA) are well-known traits of plant growth-promoting rhizobacteria (PGPR). Here we investigated the expression of these traits as affected by salinity for three PGPR strains ( Pseudomonas fluorescens , Bacillus megaterium and Variovorax paradoxus ) at two salinity levels [2 and 5 % NaCl (w/v)]. Among the three strains, growth of B. megaterium was the least affected by high salinity. However, P. fluorescens was the best strain for maintaining ACC-deaminase activity, siderophore and IAA production under stressed conditions. V. paradoxus was the least tolerant to salts and had minimal growth and low PGPR trait expression under salt stress. Results of experiment examining the impact of bacterial inoculation on cucumber growth at three salinity levels [1 (normal), 7 and 10 dS m −1 ] revealed that P. fluorescens also had good rhizosphere competence and was the most effective for alleviating the negative impacts of salinity on cucumber growth. The results suggest that in addition to screening the PGPR regarding their effect on growth under salinity, PGPR trait expression is also an important aspect that may be useful for selecting the most promising PGPR bacterial strains for improving plant tolerance to salinity stress.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0302-8933
1432-072X
DOI:10.1007/s00203-016-1197-5