Existence of least energy nodal solution for a Schrödinger–Poisson system in bounded domains
We prove the existence of least energy nodal solution for a class of Schrodinger-Poisson system in a bounded domain \({\Omega \subset {\mathbb{R}} reversible reaction }\) with nonlinearity having a subcritical growth.
Saved in:
Published in | Zeitschrift für angewandte Mathematik und Physik Vol. 65; no. 6; pp. 1153 - 1166 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
Springer Basel
01.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We prove the existence of least energy nodal solution for a class of Schrodinger-Poisson system in a bounded domain \({\Omega \subset {\mathbb{R}} reversible reaction }\) with nonlinearity having a subcritical growth. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-013-0376-3 |