Energy Distribution Analysis in Boosted HCCI-like / LTGC Engines - Understanding the Trade-Offs to Maximize the Thermal Efficiency

A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systemati...

Full description

Saved in:
Bibliographic Details
Published inSAE International journal of engines Vol. 8; no. 3; pp. 956 - 980
Main Authors Dernotte, Jeremie, Dec, John E., Ji, Chunsheng
Format Journal Article
LanguageEnglish
Published Warrendale SAE International 14.04.2015
SAE International, a Pennsylvania Not-for Profit
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), on the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. The various methods are evaluated in order to validate the trends. This work focuses on explaining the trends in thermal efficiency and the various energy-loss terms for independent sweeps of fueling rate, intake temperature and engine speed. Trends in thermal efficiency can be well-explained by considering variations in combustion efficiency, CA50 retard,γand heat transfer. By identifying the energy losses, these results provide a new understanding that can help to optimize the thermal efficiency across the load/speed range in LTGC engines. Of particular importance, a picture is provided of how the heat transfer varies with changes in engine operating conditions. For example, results indicate that CA50 and the magnitude of the acoustic oscillations (i.e.knock) are fundamental parameters affecting the heat transfer.
AbstractList A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), on the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. The various methods are evaluated in order to validate the trends. This work focuses on explaining the trends in thermal efficiency and the various energy-loss terms for independent sweeps of fueling rate, intake temperature and engine speed. Trends in thermal efficiency can be well-explained by considering variations in combustion efficiency, CA50 retard, γ and heat transfer. By identifying the energy losses, these results provide a new understanding that can help to optimize the thermal efficiency across the load/speed range in LTGC engines. Of particular importance, a picture is provided of how the heat transfer varies with changes in engine operating conditions. For example, results indicate that CA50 and the magnitude of the acoustic oscillations (i.e. knock) are fundamental parameters affecting the heat transfer.
A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), on the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. The various methods are evaluated in order to validate the trends. This work focuses on explaining the trends in thermal efficiency and the various energy-loss terms for independent sweeps of fueling rate, intake temperature and engine speed. Trends in thermal efficiency can be well-explained by considering variations in combustion efficiency, CA50 retard,γand heat transfer. By identifying the energy losses, these results provide a new understanding that can help to optimize the thermal efficiency across the load/speed range in LTGC engines. Of particular importance, a picture is provided of how the heat transfer varies with changes in engine operating conditions. For example, results indicate that CA50 and the magnitude of the acoustic oscillations (i.e.knock) are fundamental parameters affecting the heat transfer.
A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), on the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. The various methods are evaluated in order to validate the trends.
A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), on the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. Furthermore, the various methods are evaluated in order to validate the trends.
ArticleNumber 2015-01-0824
Author Dec, John E.
Dernotte, Jeremie
Ji, Chunsheng
Author_xml – sequence: 1
  givenname: Jeremie
  surname: Dernotte
  fullname: Dernotte, Jeremie
– sequence: 2
  givenname: John E.
  surname: Dec
  fullname: Dec, John E.
– sequence: 3
  givenname: Chunsheng
  surname: Ji
  fullname: Ji, Chunsheng
BackLink https://www.osti.gov/servlets/purl/1237374$$D View this record in Osti.gov
BookMark eNpVkU1vEzEQhleoSLSFG1ckC66Y-mvt9bEs6YcU1Et6thzvOHHY2MV2JMKRX85GWxVxmpHm0SPN-140ZzFFaJr3lHwRTNErRmiLCcWkY-JVc061kJhrIc5edi7fNBel7AiRinBy3vxZRMibI_oWSs1hfaghRXQd7XgsoaAQ0deUSoUB3fX9PR7DD0BXaLm67dEibkKEgjB6jAPkUm0cQtygugW0ynYA_OB9QTWh7_ZX2IffMJ-2kPd2RAvvgwsQ3fFt89rbscC753nZPN4sVv0dXj7c3vfXS-wEIxV3lHS6pXxYe62F00wRLddWats58IMSxLYdFXYKQlLHO6qlEoMTnZeMSwX8svk4e6eHgikuVHBbl2IEVw1lXHElJujTDD3l9PMApZpdOuQpj2JYK0jb0rYlE_V5plxOpWTw5imHvc1HQ4k5VWFOVRhCzamKCcczXiyYECtMwlPQdvwn_5__MPO7UlN-cTPJlNJa8b-V_ZPN
CitedBy_id crossref_primary_10_4271_2019_01_2253
crossref_primary_10_4271_2015_24_2451
crossref_primary_10_4271_2017_01_0729
crossref_primary_10_1177_14680874231171429
crossref_primary_10_4271_2022_01_0455
crossref_primary_10_1177_14680874241244550
crossref_primary_10_1016_j_fuel_2023_127625
crossref_primary_10_1021_acs_energyfuels_1c01979
crossref_primary_10_4271_2021_01_1182
crossref_primary_10_1016_j_ifacol_2016_08_049
crossref_primary_10_1016_j_apenergy_2019_113645
crossref_primary_10_1177_14680874211013667
crossref_primary_10_1016_j_energy_2023_129998
crossref_primary_10_1177_1468087418801660
crossref_primary_10_4271_2017_01_2257
crossref_primary_10_4271_2017_01_0731
crossref_primary_10_1016_j_energy_2024_130840
crossref_primary_10_4271_2015_01_0813
crossref_primary_10_1016_j_applthermaleng_2019_113954
crossref_primary_10_1016_j_fuel_2018_12_055
crossref_primary_10_1016_j_fuel_2021_122990
crossref_primary_10_1016_j_jaecs_2022_100091
crossref_primary_10_1016_j_fuel_2022_126823
crossref_primary_10_1115_1_4062409
crossref_primary_10_1177_14680874221117869
crossref_primary_10_3389_fther_2023_1101333
crossref_primary_10_1016_j_proci_2022_09_055
crossref_primary_10_4271_2020_01_1136
crossref_primary_10_1177_14680874231212250
Cites_doi 10.1016/j.proci.2008.08.008
10.1016/j.applthermaleng.2008.03.014
10.4271/2005-01-0113
10.4271/2011-01-0897
10.4271/2002-01-0108
10.4271/2004-01-0557
10.1016/j.combustflame.2012.11.002
10.4271/2002-01-1309
10.4271/2004-01-2996
10.4271/2002-01-0238
10.1016/j.pecs.2013.05.002
10.4271/2001-01-1893
10.1080/00102202.2011.589875
10.1016/j.proci.2014.06.152
10.1016/j.proci.2006.08.010
10.4271/2002-01-2859
10.4271/2006-01-0870
10.1177/1468087414544899
10.1016/j.proci.2004.08.132
10.4271/2004-01-1910
10.1016/j.apenergy.2013.09.056
10.4271/2003-01-3173
10.4271/2014-01-1282
10.4271/2003-01-0752
10.4271/2010-01-1086
10.4271/2009-01-0129
10.1002/9781118354179.auto121
10.4271/980787
10.1115/1.4024589
10.4271/2012-01-1107
10.4271/2014-01-1272
10.4271/790825
10.4271/2002-01-2869
10.4271/2003-01-3217
10.4271/670931
10.4271/2004-01-1900
10.1016/0360-1285(87)90005-0
ContentType Journal Article
Copyright Copyright © 2015 SAE International
Copyright SAE International, a Pennsylvania Not-for Profit 2015
Copyright_xml – notice: Copyright © 2015 SAE International
– notice: Copyright SAE International, a Pennsylvania Not-for Profit 2015
CorporateAuthor Sandia National Lab. (SNL-CA), Livermore, CA (United States)
CorporateAuthor_xml – name: Sandia National Lab. (SNL-CA), Livermore, CA (United States)
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
OIOZB
OTOTI
DOI 10.4271/2015-01-0824
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
ProQuest Engineering Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList

Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1946-3944
EndPage 980
ExternalDocumentID 1237374
10_4271_2015_01_0824
2015_01_0824
26277997
GroupedDBID 6P2
ABBHK
ABDBF
ABJCF
ABJNI
ABXSQ
ACGFS
ADACV
ADNWM
ADULT
AEKFB
AEUPB
AFKRA
AIFVT
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
EBS
EJD
EQZMY
ESX
HCIFZ
IZHOT
JAAYA
JENOY
JKQEH
JLEZI
JLXEF
JPL
JSODD
JST
L7B
M7S
PTHSS
PV9
PYD
RHI
RZL
SA0
SWMRO
AIRJO
AAYXX
CITATION
H13
8FE
8FG
DWQXO
L6V
PQEST
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
ID FETCH-LOGICAL-c420t-81089513dbf994c927096ba69a8cefd740a5814a27161c3819674dc48f62367e3
IEDL.DBID BENPR
ISSN 1946-3936
1946-3944
IngestDate Fri May 19 02:01:20 EDT 2023
Thu Oct 10 16:49:28 EDT 2024
Fri Aug 23 01:22:08 EDT 2024
Thu Apr 18 22:54:59 EDT 2024
Thu Jun 13 11:10:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MeetingName SAE 2015 World Congress & Exhibition
MergedId FETCHMERGED-LOGICAL-c420t-81089513dbf994c927096ba69a8cefd740a5814a27161c3819674dc48f62367e3
Notes 2015-04-21 ANNUAL 217480 Detroit, Michigan, United States
AC04-94AL85000
USDOE Office of Secretary of Energy (S)
SAND-2015-1283J
OpenAccessLink https://www.osti.gov/servlets/purl/1237374
PQID 2540551550
PQPubID 5013118
PageCount 25
ParticipantIDs osti_scitechconnect_1237374
proquest_journals_2540551550
crossref_primary_10_4271_2015_01_0824
sae_internationaljournals_2015_01_0824
jstor_primary_26277997
PublicationCentury 2000
PublicationDate 2015-04-14
PublicationDateYYYYMMDD 2015-04-14
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-14
  day: 14
PublicationDecade 2010
PublicationPlace Warrendale
PublicationPlace_xml – name: Warrendale
– name: United States
PublicationTitle SAE International journal of engines
PublicationYear 2015
Publisher SAE International
SAE International, a Pennsylvania Not-for Profit
Publisher_xml – name: SAE International
– name: SAE International, a Pennsylvania Not-for Profit
References ref13
ref35
ref12
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref39
ref38
ref19
ref18
cr-split#-ref16.2
ref24
ref23
ref26
cr-split#-ref37.2
cr-split#-ref16.1
ref25
cr-split#-ref37.1
ref20
cr-split#-ref34.2
ref22
cr-split#-ref34.1
ref21
ref28
ref27
ref29
ref8
cr-split#-ref1.1
ref9
ref4
ref5
cr-split#-ref6.1
cr-split#-ref6.2
cr-split#-ref7.1
cr-split#-ref7.2
cr-split#-ref1.2
cr-split#-ref3.1
cr-split#-ref3.2
References_xml – ident: #cr-split#-ref3.1
  doi: 10.1016/j.proci.2008.08.008
– ident: ref31
  doi: 10.1016/j.applthermaleng.2008.03.014
– ident: ref17
  doi: 10.4271/2005-01-0113
– ident: ref14
  doi: 10.4271/2011-01-0897
– ident: ref18
  doi: 10.4271/2002-01-0108
– ident: ref36
  doi: 10.4271/2004-01-0557
– ident: #cr-split#-ref1.1
  doi: 10.1016/j.combustflame.2012.11.002
– ident: ref10
  doi: 10.4271/2002-01-1309
– ident: ref24
  doi: 10.4271/2004-01-2996
– ident: ref35
  doi: 10.4271/2002-01-0238
– ident: #cr-split#-ref6.2
  doi: 10.1016/j.pecs.2013.05.002
– ident: ref11
  doi: 10.4271/2001-01-1893
– ident: #cr-split#-ref34.2
  doi: 10.1080/00102202.2011.589875
– ident: ref22
  doi: 10.1016/j.proci.2014.06.152
– ident: #cr-split#-ref34.1
  doi: 10.1080/00102202.2011.589875
– ident: #cr-split#-ref37.1
  doi: 10.1016/j.proci.2006.08.010
– ident: #cr-split#-ref37.2
  doi: 10.1016/j.proci.2006.08.010
– ident: ref21
  doi: 10.4271/2002-01-2859
– ident: ref29
  doi: 10.4271/2006-01-0870
– ident: ref19
  doi: 10.1177/1468087414544899
– ident: #cr-split#-ref7.1
  doi: 10.1016/j.proci.2004.08.132
– ident: ref38
  doi: 10.4271/2004-01-1910
– ident: #cr-split#-ref16.1
  doi: 10.1016/j.apenergy.2013.09.056
– ident: ref9
  doi: 10.4271/2003-01-3173
– ident: ref39
  doi: 10.4271/2014-01-1282
– ident: ref8
  doi: 10.4271/2003-01-0752
– ident: ref13
  doi: 10.4271/2010-01-1086
– ident: ref30
  doi: 10.4271/2009-01-0129
– ident: ref2
  doi: 10.1002/9781118354179.auto121
– ident: #cr-split#-ref7.2
  doi: 10.1016/j.proci.2004.08.132
– ident: ref5
  doi: 10.4271/980787
– ident: ref15
  doi: 10.1115/1.4024589
– ident: ref23
– ident: #cr-split#-ref3.2
  doi: 10.1016/j.proci.2008.08.008
– ident: ref26
– ident: ref4
  doi: 10.4271/2012-01-1107
– ident: ref20
  doi: 10.4271/2014-01-1272
– ident: ref27
  doi: 10.4271/790825
– ident: #cr-split#-ref1.2
  doi: 10.1016/j.combustflame.2012.11.002
– ident: ref12
  doi: 10.4271/2002-01-2869
– ident: #cr-split#-ref16.2
  doi: 10.1016/j.apenergy.2013.09.056
– ident: ref33
  doi: 10.4271/2003-01-3217
– ident: ref25
  doi: 10.4271/670931
– ident: ref32
  doi: 10.4271/2004-01-1900
– ident: #cr-split#-ref6.1
  doi: 10.1016/j.pecs.2013.05.002
– ident: ref28
  doi: 10.1016/0360-1285(87)90005-0
SSID ssj0067030
Score 2.218084
Snippet A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been...
SourceID osti
proquest
crossref
sae
jstor
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 956
SubjectTerms ADVANCED PROPULSION SYSTEMS
Coefficients
Combustion
combustion / combustion processes
Combustion temperature
Efficiency
ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION
Energy distribution
Engines
Estimation methods
Fuels
Gas temperature
HCCI engines
Heat transfer
Low temperature
Speed
Thermodynamic efficiency
Trends
Title Energy Distribution Analysis in Boosted HCCI-like / LTGC Engines - Understanding the Trade-Offs to Maximize the Thermal Efficiency
URI https://www.jstor.org/stable/26277997
https://doi.org/10.4271/2015-01-0824
https://www.proquest.com/docview/2540551550
https://www.osti.gov/servlets/purl/1237374
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbY7QUOiFfF0lL5ANysOo7jxwnRZbcLogWhrtSb5TiOiCibQoKEOPLLmcmDphfOsR3J8_bMfEPIC228SEoQQKU9Z1J5kLmQcRaxhijwokwVdiOfnavNVr6_zC6HB7dmKKscdWKnqIs64Bv5sUDXAueR8NfX3xlOjcLs6jBCY0b2BEQKfE72Tlbnnz6PulghP3d5ZalYajFRiaXvUugEov4k62JpI-Qto9TXJYKKrkHIbjmes8bHifVZPyD3B7eRvunp_JDcibtH5N4ETPAx-bPq2vjoW4TCHaZY0RFzhFY7elJ3DR10s1y-Y1fV10iP6YeL0yXtj2koo9tpqwsF35CCLSsi-1iWDW1reuZ_Vd-q37H_9AW1-hVddSgU2ML5hGzXq4vlhg0TFliQgrfMJNyAi5UWeWmtDFZoiGhyr6w3IZaFltxnJpEe7kslAYM7pWURpCkVIr_FdJ_Md_UuPiVUpIVPMMdpPWwwOpfWZ8EWOZdpbrNyQV6OV-yueyANBwEIksIhKRxPHJJiQfa7-_-3SCihtbV6QQ6QIA48A4S3DVgHFFoHllenGrYdjnRygxQ27oZnFuQV0M5V01fWm2WT3z_7_zkH5G7PN5Il8pDM2x8_43PwStr8iMzM-vRoYMC_cY3dIw
link.rule.ids 230,315,783,787,888,12777,21400,27936,27937,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoewAOiFfVbQv4ANysxo5jxydEly1b2F0Q2pV6sxzHERFl05IgIY78cmbyoOmFc2xH8rw9M98Q8lKnTvACBFBpFzGpHMicTyIWsIbIR3kRK-xGXq7UfCM_XCQX_YNb3ZdVDjqxVdR55fGN_ESga4HzSKI3V9cMp0ZhdrUfobFD9hCqCoKvvdPZ6vOXQRcr5Oc2rywViw0mKrH0XQrNIernSRtLp0LeMkpdXSKo6AqE7JbjuVO7MLI-Zw_Jg95tpG87Oj8id8L2Mbk_AhN8Qv7M2jY--g6hcPspVnTAHKHllp5WbUMHnU-n5-yy_BboCV2s309pd0xNGd2MW10o-IYUbFke2KeiqGlT0aX7VX4vf4fu01fU6pd01qJQYAvnU7I5m62nc9ZPWGBeiqhhKY9ScLHiPCuMkd4IDRFN5pRxqQ9FrmXkkpRLB_eluMfgTmmZe5kWCpHfQrxPdrfVNhwQKuLcccxxGgcbUp1J4xJv8iyScWaSYkJeDVdsrzogDQsBCJLCIilsxC2SYkL22_v_t0goobUxekKOkCAWPAOEt_VYB-QbC5ZXxxq2HQ90sr0U1vaGZybkNdDOluNX1ptlo98f_v-cF-TufL1c2MX56uMRudfxkGRcHpPd5sfP8Aw8lCZ73rPhX-PM3zc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Distribution+Analysis+in+Boosted+HCCI-like+%2F+LTGC+Engines+-+Understanding+the+Trade-Offs+to+Maximize+the+Thermal+Efficiency&rft.jtitle=SAE+International+journal+of+engines&rft.au=Dernotte%2C+Jeremie&rft.au=Dec%2C+John+E.&rft.au=Ji%2C+Chunsheng&rft.date=2015-04-14&rft.pub=SAE+International&rft.issn=1946-3936&rft.eissn=1946-3944&rft.volume=8&rft.issue=3&rft.spage=956&rft.epage=980&rft_id=info:doi/10.4271%2F2015-01-0824&rft.externalDocID=26277997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1946-3936&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1946-3936&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1946-3936&client=summon