Energy Distribution Analysis in Boosted HCCI-like / LTGC Engines - Understanding the Trade-Offs to Maximize the Thermal Efficiency
A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systemati...
Saved in:
Published in | SAE International journal of engines Vol. 8; no. 3; pp. 956 - 980 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Warrendale
SAE International
14.04.2015
SAE International, a Pennsylvania Not-for Profit |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), on the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. The various methods are evaluated in order to validate the trends.
This work focuses on explaining the trends in thermal efficiency and the various energy-loss terms for independent sweeps of fueling rate, intake temperature and engine speed. Trends in thermal efficiency can be well-explained by considering variations in combustion efficiency, CA50 retard,γand heat transfer. By identifying the energy losses, these results provide a new understanding that can help to optimize the thermal efficiency across the load/speed range in LTGC engines. Of particular importance, a picture is provided of how the heat transfer varies with changes in engine operating conditions. For example, results indicate that CA50 and the magnitude of the acoustic oscillations (i.e.knock) are fundamental parameters affecting the heat transfer. |
---|---|
AbstractList | A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), on the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. The various methods are evaluated in order to validate the trends.
This work focuses on explaining the trends in thermal efficiency and the various energy-loss terms for independent sweeps of fueling rate, intake temperature and engine speed. Trends in thermal efficiency can be well-explained by considering variations in combustion efficiency, CA50 retard, γ and heat transfer. By identifying the energy losses, these results provide a new understanding that can help to optimize the thermal efficiency across the load/speed range in LTGC engines. Of particular importance, a picture is provided of how the heat transfer varies with changes in engine operating conditions. For example, results indicate that CA50 and the magnitude of the acoustic oscillations (i.e. knock) are fundamental parameters affecting the heat transfer. A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), on the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. The various methods are evaluated in order to validate the trends. This work focuses on explaining the trends in thermal efficiency and the various energy-loss terms for independent sweeps of fueling rate, intake temperature and engine speed. Trends in thermal efficiency can be well-explained by considering variations in combustion efficiency, CA50 retard,γand heat transfer. By identifying the energy losses, these results provide a new understanding that can help to optimize the thermal efficiency across the load/speed range in LTGC engines. Of particular importance, a picture is provided of how the heat transfer varies with changes in engine operating conditions. For example, results indicate that CA50 and the magnitude of the acoustic oscillations (i.e.knock) are fundamental parameters affecting the heat transfer. A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), on the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. The various methods are evaluated in order to validate the trends. A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), on the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. Furthermore, the various methods are evaluated in order to validate the trends. |
ArticleNumber | 2015-01-0824 |
Author | Dec, John E. Dernotte, Jeremie Ji, Chunsheng |
Author_xml | – sequence: 1 givenname: Jeremie surname: Dernotte fullname: Dernotte, Jeremie – sequence: 2 givenname: John E. surname: Dec fullname: Dec, John E. – sequence: 3 givenname: Chunsheng surname: Ji fullname: Ji, Chunsheng |
BackLink | https://www.osti.gov/servlets/purl/1237374$$D View this record in Osti.gov |
BookMark | eNpVkU1vEzEQhleoSLSFG1ckC66Y-mvt9bEs6YcU1Et6thzvOHHY2MV2JMKRX85GWxVxmpHm0SPN-140ZzFFaJr3lHwRTNErRmiLCcWkY-JVc061kJhrIc5edi7fNBel7AiRinBy3vxZRMibI_oWSs1hfaghRXQd7XgsoaAQ0deUSoUB3fX9PR7DD0BXaLm67dEibkKEgjB6jAPkUm0cQtygugW0ynYA_OB9QTWh7_ZX2IffMJ-2kPd2RAvvgwsQ3fFt89rbscC753nZPN4sVv0dXj7c3vfXS-wEIxV3lHS6pXxYe62F00wRLddWats58IMSxLYdFXYKQlLHO6qlEoMTnZeMSwX8svk4e6eHgikuVHBbl2IEVw1lXHElJujTDD3l9PMApZpdOuQpj2JYK0jb0rYlE_V5plxOpWTw5imHvc1HQ4k5VWFOVRhCzamKCcczXiyYECtMwlPQdvwn_5__MPO7UlN-cTPJlNJa8b-V_ZPN |
CitedBy_id | crossref_primary_10_4271_2019_01_2253 crossref_primary_10_4271_2015_24_2451 crossref_primary_10_4271_2017_01_0729 crossref_primary_10_1177_14680874231171429 crossref_primary_10_4271_2022_01_0455 crossref_primary_10_1177_14680874241244550 crossref_primary_10_1016_j_fuel_2023_127625 crossref_primary_10_1021_acs_energyfuels_1c01979 crossref_primary_10_4271_2021_01_1182 crossref_primary_10_1016_j_ifacol_2016_08_049 crossref_primary_10_1016_j_apenergy_2019_113645 crossref_primary_10_1177_14680874211013667 crossref_primary_10_1016_j_energy_2023_129998 crossref_primary_10_1177_1468087418801660 crossref_primary_10_4271_2017_01_2257 crossref_primary_10_4271_2017_01_0731 crossref_primary_10_1016_j_energy_2024_130840 crossref_primary_10_4271_2015_01_0813 crossref_primary_10_1016_j_applthermaleng_2019_113954 crossref_primary_10_1016_j_fuel_2018_12_055 crossref_primary_10_1016_j_fuel_2021_122990 crossref_primary_10_1016_j_jaecs_2022_100091 crossref_primary_10_1016_j_fuel_2022_126823 crossref_primary_10_1115_1_4062409 crossref_primary_10_1177_14680874221117869 crossref_primary_10_3389_fther_2023_1101333 crossref_primary_10_1016_j_proci_2022_09_055 crossref_primary_10_4271_2020_01_1136 crossref_primary_10_1177_14680874231212250 |
Cites_doi | 10.1016/j.proci.2008.08.008 10.1016/j.applthermaleng.2008.03.014 10.4271/2005-01-0113 10.4271/2011-01-0897 10.4271/2002-01-0108 10.4271/2004-01-0557 10.1016/j.combustflame.2012.11.002 10.4271/2002-01-1309 10.4271/2004-01-2996 10.4271/2002-01-0238 10.1016/j.pecs.2013.05.002 10.4271/2001-01-1893 10.1080/00102202.2011.589875 10.1016/j.proci.2014.06.152 10.1016/j.proci.2006.08.010 10.4271/2002-01-2859 10.4271/2006-01-0870 10.1177/1468087414544899 10.1016/j.proci.2004.08.132 10.4271/2004-01-1910 10.1016/j.apenergy.2013.09.056 10.4271/2003-01-3173 10.4271/2014-01-1282 10.4271/2003-01-0752 10.4271/2010-01-1086 10.4271/2009-01-0129 10.1002/9781118354179.auto121 10.4271/980787 10.1115/1.4024589 10.4271/2012-01-1107 10.4271/2014-01-1272 10.4271/790825 10.4271/2002-01-2869 10.4271/2003-01-3217 10.4271/670931 10.4271/2004-01-1900 10.1016/0360-1285(87)90005-0 |
ContentType | Journal Article |
Copyright | Copyright © 2015 SAE International Copyright SAE International, a Pennsylvania Not-for Profit 2015 |
Copyright_xml | – notice: Copyright © 2015 SAE International – notice: Copyright SAE International, a Pennsylvania Not-for Profit 2015 |
CorporateAuthor | Sandia National Lab. (SNL-CA), Livermore, CA (United States) |
CorporateAuthor_xml | – name: Sandia National Lab. (SNL-CA), Livermore, CA (United States) |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PQEST PQQKQ PQUKI PRINS PTHSS OIOZB OTOTI |
DOI | 10.4271/2015-01-0824 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection ProQuest Engineering Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1946-3944 |
EndPage | 980 |
ExternalDocumentID | 1237374 10_4271_2015_01_0824 2015_01_0824 26277997 |
GroupedDBID | 6P2 ABBHK ABDBF ABJCF ABJNI ABXSQ ACGFS ADACV ADNWM ADULT AEKFB AEUPB AFKRA AIFVT ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ CCPQU EBS EJD EQZMY ESX HCIFZ IZHOT JAAYA JENOY JKQEH JLEZI JLXEF JPL JSODD JST L7B M7S PTHSS PV9 PYD RHI RZL SA0 SWMRO AIRJO AAYXX CITATION H13 8FE 8FG DWQXO L6V PQEST PQQKQ PQUKI PRINS OIOZB OTOTI |
ID | FETCH-LOGICAL-c420t-81089513dbf994c927096ba69a8cefd740a5814a27161c3819674dc48f62367e3 |
IEDL.DBID | BENPR |
ISSN | 1946-3936 1946-3944 |
IngestDate | Fri May 19 02:01:20 EDT 2023 Thu Oct 10 16:49:28 EDT 2024 Fri Aug 23 01:22:08 EDT 2024 Thu Apr 18 22:54:59 EDT 2024 Thu Jun 13 11:10:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MeetingName | SAE 2015 World Congress & Exhibition |
MergedId | FETCHMERGED-LOGICAL-c420t-81089513dbf994c927096ba69a8cefd740a5814a27161c3819674dc48f62367e3 |
Notes | 2015-04-21 ANNUAL 217480 Detroit, Michigan, United States AC04-94AL85000 USDOE Office of Secretary of Energy (S) SAND-2015-1283J |
OpenAccessLink | https://www.osti.gov/servlets/purl/1237374 |
PQID | 2540551550 |
PQPubID | 5013118 |
PageCount | 25 |
ParticipantIDs | osti_scitechconnect_1237374 proquest_journals_2540551550 crossref_primary_10_4271_2015_01_0824 sae_internationaljournals_2015_01_0824 jstor_primary_26277997 |
PublicationCentury | 2000 |
PublicationDate | 2015-04-14 |
PublicationDateYYYYMMDD | 2015-04-14 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Warrendale |
PublicationPlace_xml | – name: Warrendale – name: United States |
PublicationTitle | SAE International journal of engines |
PublicationYear | 2015 |
Publisher | SAE International SAE International, a Pennsylvania Not-for Profit |
Publisher_xml | – name: SAE International – name: SAE International, a Pennsylvania Not-for Profit |
References | ref13 ref35 ref12 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref17 ref39 ref38 ref19 ref18 cr-split#-ref16.2 ref24 ref23 ref26 cr-split#-ref37.2 cr-split#-ref16.1 ref25 cr-split#-ref37.1 ref20 cr-split#-ref34.2 ref22 cr-split#-ref34.1 ref21 ref28 ref27 ref29 ref8 cr-split#-ref1.1 ref9 ref4 ref5 cr-split#-ref6.1 cr-split#-ref6.2 cr-split#-ref7.1 cr-split#-ref7.2 cr-split#-ref1.2 cr-split#-ref3.1 cr-split#-ref3.2 |
References_xml | – ident: #cr-split#-ref3.1 doi: 10.1016/j.proci.2008.08.008 – ident: ref31 doi: 10.1016/j.applthermaleng.2008.03.014 – ident: ref17 doi: 10.4271/2005-01-0113 – ident: ref14 doi: 10.4271/2011-01-0897 – ident: ref18 doi: 10.4271/2002-01-0108 – ident: ref36 doi: 10.4271/2004-01-0557 – ident: #cr-split#-ref1.1 doi: 10.1016/j.combustflame.2012.11.002 – ident: ref10 doi: 10.4271/2002-01-1309 – ident: ref24 doi: 10.4271/2004-01-2996 – ident: ref35 doi: 10.4271/2002-01-0238 – ident: #cr-split#-ref6.2 doi: 10.1016/j.pecs.2013.05.002 – ident: ref11 doi: 10.4271/2001-01-1893 – ident: #cr-split#-ref34.2 doi: 10.1080/00102202.2011.589875 – ident: ref22 doi: 10.1016/j.proci.2014.06.152 – ident: #cr-split#-ref34.1 doi: 10.1080/00102202.2011.589875 – ident: #cr-split#-ref37.1 doi: 10.1016/j.proci.2006.08.010 – ident: #cr-split#-ref37.2 doi: 10.1016/j.proci.2006.08.010 – ident: ref21 doi: 10.4271/2002-01-2859 – ident: ref29 doi: 10.4271/2006-01-0870 – ident: ref19 doi: 10.1177/1468087414544899 – ident: #cr-split#-ref7.1 doi: 10.1016/j.proci.2004.08.132 – ident: ref38 doi: 10.4271/2004-01-1910 – ident: #cr-split#-ref16.1 doi: 10.1016/j.apenergy.2013.09.056 – ident: ref9 doi: 10.4271/2003-01-3173 – ident: ref39 doi: 10.4271/2014-01-1282 – ident: ref8 doi: 10.4271/2003-01-0752 – ident: ref13 doi: 10.4271/2010-01-1086 – ident: ref30 doi: 10.4271/2009-01-0129 – ident: ref2 doi: 10.1002/9781118354179.auto121 – ident: #cr-split#-ref7.2 doi: 10.1016/j.proci.2004.08.132 – ident: ref5 doi: 10.4271/980787 – ident: ref15 doi: 10.1115/1.4024589 – ident: ref23 – ident: #cr-split#-ref3.2 doi: 10.1016/j.proci.2008.08.008 – ident: ref26 – ident: ref4 doi: 10.4271/2012-01-1107 – ident: ref20 doi: 10.4271/2014-01-1272 – ident: ref27 doi: 10.4271/790825 – ident: #cr-split#-ref1.2 doi: 10.1016/j.combustflame.2012.11.002 – ident: ref12 doi: 10.4271/2002-01-2869 – ident: #cr-split#-ref16.2 doi: 10.1016/j.apenergy.2013.09.056 – ident: ref33 doi: 10.4271/2003-01-3217 – ident: ref25 doi: 10.4271/670931 – ident: ref32 doi: 10.4271/2004-01-1900 – ident: #cr-split#-ref6.1 doi: 10.1016/j.pecs.2013.05.002 – ident: ref28 doi: 10.1016/0360-1285(87)90005-0 |
SSID | ssj0067030 |
Score | 2.218084 |
Snippet | A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been... |
SourceID | osti proquest crossref sae jstor |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 956 |
SubjectTerms | ADVANCED PROPULSION SYSTEMS Coefficients Combustion combustion / combustion processes Combustion temperature Efficiency ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION Energy distribution Engines Estimation methods Fuels Gas temperature HCCI engines Heat transfer Low temperature Speed Thermodynamic efficiency Trends |
Title | Energy Distribution Analysis in Boosted HCCI-like / LTGC Engines - Understanding the Trade-Offs to Maximize the Thermal Efficiency |
URI | https://www.jstor.org/stable/26277997 https://doi.org/10.4271/2015-01-0824 https://www.proquest.com/docview/2540551550 https://www.osti.gov/servlets/purl/1237374 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbY7QUOiFfF0lL5ANysOo7jxwnRZbcLogWhrtSb5TiOiCibQoKEOPLLmcmDphfOsR3J8_bMfEPIC228SEoQQKU9Z1J5kLmQcRaxhijwokwVdiOfnavNVr6_zC6HB7dmKKscdWKnqIs64Bv5sUDXAueR8NfX3xlOjcLs6jBCY0b2BEQKfE72Tlbnnz6PulghP3d5ZalYajFRiaXvUugEov4k62JpI-Qto9TXJYKKrkHIbjmes8bHifVZPyD3B7eRvunp_JDcibtH5N4ETPAx-bPq2vjoW4TCHaZY0RFzhFY7elJ3DR10s1y-Y1fV10iP6YeL0yXtj2koo9tpqwsF35CCLSsi-1iWDW1reuZ_Vd-q37H_9AW1-hVddSgU2ML5hGzXq4vlhg0TFliQgrfMJNyAi5UWeWmtDFZoiGhyr6w3IZaFltxnJpEe7kslAYM7pWURpCkVIr_FdJ_Md_UuPiVUpIVPMMdpPWwwOpfWZ8EWOZdpbrNyQV6OV-yueyANBwEIksIhKRxPHJJiQfa7-_-3SCihtbV6QQ6QIA48A4S3DVgHFFoHllenGrYdjnRygxQ27oZnFuQV0M5V01fWm2WT3z_7_zkH5G7PN5Il8pDM2x8_43PwStr8iMzM-vRoYMC_cY3dIw |
link.rule.ids | 230,315,783,787,888,12777,21400,27936,27937,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoewAOiFfVbQv4ANysxo5jxydEly1b2F0Q2pV6sxzHERFl05IgIY78cmbyoOmFc2xH8rw9M98Q8lKnTvACBFBpFzGpHMicTyIWsIbIR3kRK-xGXq7UfCM_XCQX_YNb3ZdVDjqxVdR55fGN_ESga4HzSKI3V9cMp0ZhdrUfobFD9hCqCoKvvdPZ6vOXQRcr5Oc2rywViw0mKrH0XQrNIernSRtLp0LeMkpdXSKo6AqE7JbjuVO7MLI-Zw_Jg95tpG87Oj8id8L2Mbk_AhN8Qv7M2jY--g6hcPspVnTAHKHllp5WbUMHnU-n5-yy_BboCV2s309pd0xNGd2MW10o-IYUbFke2KeiqGlT0aX7VX4vf4fu01fU6pd01qJQYAvnU7I5m62nc9ZPWGBeiqhhKY9ScLHiPCuMkd4IDRFN5pRxqQ9FrmXkkpRLB_eluMfgTmmZe5kWCpHfQrxPdrfVNhwQKuLcccxxGgcbUp1J4xJv8iyScWaSYkJeDVdsrzogDQsBCJLCIilsxC2SYkL22_v_t0goobUxekKOkCAWPAOEt_VYB-QbC5ZXxxq2HQ90sr0U1vaGZybkNdDOluNX1ptlo98f_v-cF-TufL1c2MX56uMRudfxkGRcHpPd5sfP8Aw8lCZ73rPhX-PM3zc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Distribution+Analysis+in+Boosted+HCCI-like+%2F+LTGC+Engines+-+Understanding+the+Trade-Offs+to+Maximize+the+Thermal+Efficiency&rft.jtitle=SAE+International+journal+of+engines&rft.au=Dernotte%2C+Jeremie&rft.au=Dec%2C+John+E.&rft.au=Ji%2C+Chunsheng&rft.date=2015-04-14&rft.pub=SAE+International&rft.issn=1946-3936&rft.eissn=1946-3944&rft.volume=8&rft.issue=3&rft.spage=956&rft.epage=980&rft_id=info:doi/10.4271%2F2015-01-0824&rft.externalDocID=26277997 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1946-3936&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1946-3936&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1946-3936&client=summon |