Energy Distribution Analysis in Boosted HCCI-like / LTGC Engines - Understanding the Trade-Offs to Maximize the Thermal Efficiency

A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systemati...

Full description

Saved in:
Bibliographic Details
Published inSAE International journal of engines Vol. 8; no. 3; pp. 956 - 980
Main Authors Dernotte, Jeremie, Dec, John E., Ji, Chunsheng
Format Journal Article
LanguageEnglish
Published Warrendale SAE International 14.04.2015
SAE International, a Pennsylvania Not-for Profit
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), on the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. The various methods are evaluated in order to validate the trends. This work focuses on explaining the trends in thermal efficiency and the various energy-loss terms for independent sweeps of fueling rate, intake temperature and engine speed. Trends in thermal efficiency can be well-explained by considering variations in combustion efficiency, CA50 retard,γand heat transfer. By identifying the energy losses, these results provide a new understanding that can help to optimize the thermal efficiency across the load/speed range in LTGC engines. Of particular importance, a picture is provided of how the heat transfer varies with changes in engine operating conditions. For example, results indicate that CA50 and the magnitude of the acoustic oscillations (i.e.knock) are fundamental parameters affecting the heat transfer.
Bibliography:2015-04-21 ANNUAL 217480 Detroit, Michigan, United States
AC04-94AL85000
USDOE Office of Secretary of Energy (S)
SAND-2015-1283J
ISSN:1946-3936
1946-3944
1946-3944
DOI:10.4271/2015-01-0824