Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations
In this paper, we shall study unilateral global bifurcation phenomenon for the following homogeneous Kirchhoff type problem \begin{equation*} \begin{cases} -\left(\int_0^1 \left\vert u'\right\vert^2\,dx\right)u''=\lambda u^3+h(x,u,\lambda)&\text{in}\,\, (0,1),\\ u(0)=u(1)=0. \end{...
Saved in:
Published in | Electronic journal of qualitative theory of differential equations Vol. 2020; no. 29; pp. 1 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
University of Szeged
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we shall study unilateral global bifurcation phenomenon for the following homogeneous Kirchhoff type problem \begin{equation*} \begin{cases} -\left(\int_0^1 \left\vert u'\right\vert^2\,dx\right)u''=\lambda u^3+h(x,u,\lambda)&\text{in}\,\, (0,1),\\ u(0)=u(1)=0. \end{cases} \end{equation*} As application of bifurcation result, we shall determine the interval of $\lambda$ in which there exist nodal solutions for the following homogeneous Kirchhoff type problem \begin{equation*} \begin{cases} -\left(\int_0^1 \left\vert u'\right\vert^2\,dx\right) u''=\lambda f(x,u)&\text{in}\,\, (0,1),\\ u(0)=u(1)=0, \end{cases} \end{equation*} where $f$ is asymptotically cubic at zero and infinity. To do this, we also establish a complete characterization of the spectrum of a homogeneous nonlocal eigenvalue problem. |
---|---|
ISSN: | 1417-3875 1417-3875 |
DOI: | 10.14232/ejqtde.2020.1.29 |