Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations

In this paper, we shall study unilateral global bifurcation phenomenon for the following homogeneous Kirchhoff type problem \begin{equation*} \begin{cases} -\left(\int_0^1 \left\vert u'\right\vert^2\,dx\right)u''=\lambda u^3+h(x,u,\lambda)&\text{in}\,\, (0,1),\\ u(0)=u(1)=0. \end{...

Full description

Saved in:
Bibliographic Details
Published inElectronic journal of qualitative theory of differential equations Vol. 2020; no. 29; pp. 1 - 13
Main Authors Liu, Fang, Luo, Hua, Dai, Guowei
Format Journal Article
LanguageEnglish
Published University of Szeged 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we shall study unilateral global bifurcation phenomenon for the following homogeneous Kirchhoff type problem \begin{equation*} \begin{cases} -\left(\int_0^1 \left\vert u'\right\vert^2\,dx\right)u''=\lambda u^3+h(x,u,\lambda)&\text{in}\,\, (0,1),\\ u(0)=u(1)=0. \end{cases} \end{equation*} As application of bifurcation result, we shall determine the interval of $\lambda$ in which there exist nodal solutions for the following homogeneous Kirchhoff type problem \begin{equation*} \begin{cases} -\left(\int_0^1 \left\vert u'\right\vert^2\,dx\right) u''=\lambda f(x,u)&\text{in}\,\, (0,1),\\ u(0)=u(1)=0, \end{cases} \end{equation*} where $f$ is asymptotically cubic at zero and infinity. To do this, we also establish a complete characterization of the spectrum of a homogeneous nonlocal eigenvalue problem.
ISSN:1417-3875
1417-3875
DOI:10.14232/ejqtde.2020.1.29