Deterministic Construction of Sparse Sensing Matrices via Finite Geometry

Compressed sensing is a novel sampling technique that provides a fundamentally new approach to data acquisition. Comparing with the traditional method, compressed sensing asserts that a sparse signal can be reconstructed from very few measurements. A central problem in compressed sensing is the cons...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 62; no. 11; pp. 2850 - 2859
Main Authors Li, Shuxing, Ge, Gennian
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2014.2318139

Cover

Loading…
More Information
Summary:Compressed sensing is a novel sampling technique that provides a fundamentally new approach to data acquisition. Comparing with the traditional method, compressed sensing asserts that a sparse signal can be reconstructed from very few measurements. A central problem in compressed sensing is the construction of sensing matrices. While random sensing matrices have been studied intensively, only a few deterministic constructions are known. As a long-standing subject in combinatorial design theory, the packing design gives rise to deterministic sparse matrices with low coherence. With this framework in mind, we investigate a series of packing designs originated from finite geometry. The connection between the sensing matrix and finite geometry is revealed, using the packing design as a bridge. More specifically, we construct a series of m ×n binary sensing matrices with sparsity order k=Θ(m 1/3 ) or k=Θ(m 1/2 ). Moreover, we use an embedding operation to merge our binary matrices with matrices having low coherence. Comparing with the original binary matrices, this embedding operation generates modified matrices with better recovery performance. Numerical simulations show that our binary and modified matrices outperform several typical sensing matrices. The sparse property of our matrices helps to accelerate the recovery process, which is very preferable in practice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2014.2318139