Wavelet footprints: theory, algorithms, and applications

Wavelet-based algorithms have been successful in different signal processing tasks. The wavelet transform is a powerful tool because it manages to represent both transient and stationary behaviors of a signal with few transform coefficients. Discontinuities often carry relevant signal information, a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 51; no. 5; pp. 1306 - 1323
Main Authors Dragotti, P.L., Vetterli, M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.2003
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Wavelet-based algorithms have been successful in different signal processing tasks. The wavelet transform is a powerful tool because it manages to represent both transient and stationary behaviors of a signal with few transform coefficients. Discontinuities often carry relevant signal information, and therefore, they represent a critical part to analyze. We study the dependency across scales of the wavelet coefficients generated by discontinuities. We start by showing that any piecewise smooth signal can be expressed as a sum of a piecewise polynomial signal and a uniformly smooth residual (Theorem 1). We then introduce the notion of footprints, which are scale space vectors that model discontinuities in piecewise polynomial signals exactly. We show that footprints form an overcomplete dictionary and develop efficient and robust algorithms to find the exact representation of a piecewise polynomial function in terms of footprints. This also leads to efficient approximation of piecewise smooth functions. Finally, we focus on applications and show that algorithms based on footprints outperform standard wavelet methods in different applications such as denoising, compression, and (nonblind) deconvolution. In the case of compression, we also prove that at high rates, footprint-based algorithms attain optimal performance (Theorem 3).
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2003.810296