Dual extended Kalman filtering in recurrent neural networks
In the classical deterministic Elman model, the estimation of parameters must be very accurate. Otherwise, the system performance is very poor. To improve the system performance, we can use a Kalman filtering algorithm to guide the operation of a trained recurrent neural network (RNN). In this case,...
Saved in:
Published in | Neural networks Vol. 16; no. 2; pp. 223 - 239 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.03.2003
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the classical deterministic Elman model, the estimation of parameters must be very accurate. Otherwise, the system performance is very poor. To improve the system performance, we can use a Kalman filtering algorithm to guide the operation of a trained recurrent neural network (RNN). In this case, during training, we need to estimate the state of hidden layer, as well as the weights of the RNN. This paper discusses how to use the dual extended Kalman filtering (DEKF) for this dual estimation and how to use our proposing DEKF for removing some unimportant weights from a trained RNN. In our approach, one Kalman algorithm is used for estimating the state of the hidden layer, and one recursive least square (RLS) algorithm is used for estimating the weights. After training, we use the error covariance matrix of the RLS algorithm to remove unimportant weights. Simulation showed that our approach is an effective joint-learning–pruning method for RNNs under the online operation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/S0893-6080(02)00230-7 |