Deformation and mechanics of a pulvinus-inspired material
Abstract Mimosa pudica rapidly folds leaves when touched. Motion is created by pulvini, ‘the plant muscles’ that allow plants to produce various complex motions. Plants rely on local control of the turgor pressure to create on-demand motion. In this paper, the mechanics of a cellular material inspir...
Saved in:
Published in | Bioinspiration & biomimetics Vol. 17; no. 6; pp. 65002 - 65011 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
Mimosa pudica
rapidly folds leaves when touched. Motion is created by pulvini, ‘the plant muscles’ that allow plants to produce various complex motions. Plants rely on local control of the turgor pressure to create on-demand motion. In this paper, the mechanics of a cellular material inspired from pulvinus of
M. pudica
is studied. First, the manufacturing process of a cell-controllable material is described. Its deformation behaviour when pressured is tested, focusing on three pressure patterns of reference. The deformations are modelled based on the minimisation of elastic energy framework. Depending on pressurisation pattern and magnitude, reversible buckling-induced motion may occur. |
---|---|
Bibliography: | BB-103011.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1748-3182 1748-3190 |
DOI: | 10.1088/1748-3190/ac884f |