On the Reliability of Majority Gates Full Adders

This paper studies the reliability of three different majority gates full adder (FA) designs, and compares them with that of a standard XOR-based FA. The analysis provides insights into different parameters that affect the reliability of FAs. The probability transfer matrix method is used to exactly...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on nanotechnology Vol. 7; no. 1; pp. 56 - 67
Main Authors Ibrahim, W., Beiu, V., Sulieman, M.H.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper studies the reliability of three different majority gates full adder (FA) designs, and compares them with that of a standard XOR-based FA. The analysis provides insights into different parameters that affect the reliability of FAs. The probability transfer matrix method is used to exactly calculate the reliability of the FAs under investigation. All simulation results show that majority gates FAs are more robust than a standard XOR-based FA. They also show how different gates affect the FAs' reliabilities and are extrapolated to give reliability estimates from the device level. Such reliability analyses should be used for a better characterization of FA designs for future nanoelectronic technologies, in addition to the well-known speed and power consumption (which have long been used for selecting and ranking FA designs).
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1536-125X
1941-0085
DOI:10.1109/TNANO.2007.915203