Slip on a mapped normal fault for the 28th December 1908 Messina earthquake (Mw 7.1) in Italy

The 28th December 1908 Messina earthquake (Mw 7.1), Italy, caused >80,000 deaths and transformed earthquake science by triggering the study of earthquake environmental effects worldwide, yet its source is still a matter of debate. To constrain the geometry and kinematics of the earthquake we use...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; p. 6481
Main Authors Meschis, M., Roberts, G. P., Mildon, Z. K., Robertson, J., Michetti, A. M., Faure Walker, J. P.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.04.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The 28th December 1908 Messina earthquake (Mw 7.1), Italy, caused >80,000 deaths and transformed earthquake science by triggering the study of earthquake environmental effects worldwide, yet its source is still a matter of debate. To constrain the geometry and kinematics of the earthquake we use elastic half-space modelling on non-planar faults, constrained by the geology and geomorphology of the Messina Strait, to replicate levelling data from 1907–1909. The novelty of our approach is that we (a) recognise the similarity between the pattern of vertical motions and that of other normal faulting earthquakes, and (b) for the first time model the levelling data using the location and geometry of a well-known offshore capable fault. Our results indicate slip on the capable fault with a dip to the east of 70° and 5 m dip-slip at depth, with slip propagating to the surface on the sea bed. Our work emphasises that geological and geomorphological observations supporting maps of capable non-planar faults should not be ignored when attempting to identify the sources of major earthquakes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-42915-2