Fluoxetine and Cocaine Induce the Epigenetic Factors MeCP2 and MBD1 in Adult Rat Brain
Once bound to methylated CpG sites, methyl-CpG-binding protein 2 (MeCP2) is thought to silence transcription of downstream genes by recruiting a histone deacetylase (HDAC). Mutations within the MeCP2 gene have been found to cause Rett syndrome, a disorder of arrested neuronal development. Using immu...
Saved in:
Published in | Molecular pharmacology Vol. 70; no. 2; pp. 487 - 492 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Pharmacology and Experimental Therapeutics
01.08.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Once bound to methylated CpG sites, methyl-CpG-binding protein 2 (MeCP2) is thought to silence transcription of downstream
genes by recruiting a histone deacetylase (HDAC). Mutations within the MeCP2 gene have been found to cause Rett syndrome, a disorder of arrested neuronal development. Using immunohistochemistry, we
found that Mecp2, as well as the methyl-CpG-binding protein MBD1, were significantly induced in normal adult rat brain after
repeated injections of fluoxetine or cocaine for 10 days (one injection per day). Mecp2 was not induced by repeated injections
of 1-(2-bis(4-fluorphenyl)-methoxy)-ethyl)-4-(3-phenyl-propyl)piperazine (GBR-12909) or nortriptyline. Together, the data
indicate that the serotonergic system is predominantly involved. Using real-time reverse transcription-polymerase chain reaction
experiments, MBD1 mRNA and both Mecp2_e1 and Mecp2_e2 transcripts were found to be induced by fluoxetine. Induction of the
methylbinding proteins was accompanied with enhanced HDAC2 labeling intensity and mRNA synthesis in response to fluoxetine.
In tandem, acetylated forms of histone H3 were found to be decreased. The effect was characterized in three serotonin projection
areas, the caudate-putamen, the frontal cortex, and the dentate gyrus subregion of hippocampus. Our data highlight GABAergic
neurons as major target cells expressing Mecp2 in response to the serotonin-elevating agents and suggest that serotonin signaling
enhances gene silencing in postmitotic neurons. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0026-895X 1521-0111 |
DOI: | 10.1124/mol.106.022301 |