Intrathecal minocycline does not block the adverse effects of repeated, intravenous morphine administration on recovery of function after SCI

Opioids are among the most effective analgesics for the management of pain in the acute phase of a spinal cord injury (SCI), and approximately 80% of patients are treated with morphine in the first 24 h following SCI. We have found that morphine treatment in the first 7 days after SCI increases symp...

Full description

Saved in:
Bibliographic Details
Published inExperimental neurology Vol. 359; p. 114255
Main Authors Rau, Josephina, Weise, Lara, Moore, Robbie, Terminel, Mabel, Brakel, Kiralyn, Cunningham, Rachel, Bryan, Jessica, Stefanov, Alexander, Hook, Michelle A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Opioids are among the most effective analgesics for the management of pain in the acute phase of a spinal cord injury (SCI), and approximately 80% of patients are treated with morphine in the first 24 h following SCI. We have found that morphine treatment in the first 7 days after SCI increases symptoms of pain at 42 days post-injury and undermines the recovery of locomotor function in a rodent model. Prior research has implicated microglia/macrophages in opioid-induced hyperalgesia and the development of neuropathic pain. We hypothesized that glial activation may also underlie the development of morphine-induced pain and cell death after SCI. Supporting this hypothesis, our previous studies found that intrathecal and intravenous morphine increase the number of activated microglia and macrophages present at the spinal lesion site, and that the adverse effects of intrathecal morphine can be blocked with intrathecal minocycline. Recognizing that the cellular expression of opioid receptors, and the intracellular signaling pathways engaged, can change with repeated administration of opioids, the current study tested whether minocycline was also protective with repeated intravenous morphine administration, more closely simulating clinical treatment. Using a rat model of SCI, we co-administered intravenous morphine and intrathecal minocycline for the first 7 days post injury and monitored sensory and locomotor recovery. Contrary to our hypothesis and previous findings with intrathecal morphine, we found that minocycline did not prevent the negative effects of morphine. Surprisingly, we also found that intrathecal minocycline alone is detrimental for locomotor recovery after SCI. Using ex vivo cell cultures, we investigated how minocycline and morphine altered microglia/macrophage function. Commensurate with published studies, we found that minocycline blocked the effects of morphine on the release of pro-inflammatory cytokines but, like morphine, it increased glial phagocytosis. While phagocytosis is critical for the removal of cellular and extracellular debris at the spinal injury site, increased phagocytosis after injury has been linked to the clearance of stressed but viable neurons and protracted inflammation. In sum, our data suggest that both morphine and minocycline alter the acute immune response, and reduce locomotor recovery after SCI. •Repeated intravenous morphine in the acute phase of spinal cord injury undermines recovery.•Repeated minocycline administration does not protect recovery from the negative effects of morphine.•Minocycline alone undermines recovery and increases lesion size after spinal cord injury.•Minocycline reduces pro-inflammatory cytokines but increases phagocytosis ex vivo.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0014-4886
1090-2430
DOI:10.1016/j.expneurol.2022.114255