A New Pan-Sharpening Method Using a Compressed Sensing Technique

This paper addresses the remote sensing image pan-sharpening problem from the perspective of compressed sensing (CS) theory which ensures that with the sparsity regularization, a compressible signal can be correctly recovered from the global linear sampled data. First, the degradation model from a h...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 49; no. 2; pp. 738 - 746
Main Authors Li, Shutao, Yang, Bin
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper addresses the remote sensing image pan-sharpening problem from the perspective of compressed sensing (CS) theory which ensures that with the sparsity regularization, a compressible signal can be correctly recovered from the global linear sampled data. First, the degradation model from a high- to low-resolution multispectral (MS) image and high-resolution panchromatic (PAN) image is constructed as a linear sampling process which is formulated as a matrix. Then, the model matrix is considered as the measurement matrix in CS, so pan-sharpening is converted into signal restoration problem with sparsity regularization. Finally, the basis pursuit (BP) algorithm is used to resolve the restoration problem, which can recover the high-resolution MS image effectively. The QuickBird and IKONOS satellite images are used to test the proposed method. The experimental results show that the proposed method can well preserve spectral and spatial details of the source images. The pan-sharpened high-resolution MS image by the proposed method is competitive or even superior to those images fused by other well-known methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2010.2067219