Cyclic Pressure Stimulates DNA Synthesis through the PI3K/Akt Signaling Pathway in Rat Bladder Smooth Muscle Cells

Previous studies demonstrated that the bladder exhibited severe tissue remodeling following spinal cord injury. In such pathological bladders, uninhibited non-voiding contractions subject bladder cells to cyclic oscillations of intravesical pressure. We hypothesize that cyclic pressure is a potentia...

Full description

Saved in:
Bibliographic Details
Published inAnnals of biomedical engineering Vol. 35; no. 9; pp. 1585 - 1594
Main Authors Stover, Joshua, Nagatomi, Jiro
Format Journal Article
LanguageEnglish
Published United States Springer Nature B.V 01.09.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previous studies demonstrated that the bladder exhibited severe tissue remodeling following spinal cord injury. In such pathological bladders, uninhibited non-voiding contractions subject bladder cells to cyclic oscillations of intravesical pressure. We hypothesize that cyclic pressure is a potential trigger for tissue remodeling in overactive bladder. Using a custom-made setup, rat bladder smooth muscle cells (SMC) in vitro were exposed to cyclic hydrostatic pressure (40 cm H2O) at either 0.1 Hz or 0.02 Hz frequency for up to 24 h. When compared to static control and cells exposed to 0.02-Hz cyclic pressure, SMC exposed to 0.1-Hz cyclic pressure contained significantly (p < 0.05) higher amounts of DNA. We confirmed that the increase in DNA was due to increased cell proliferation, indicated by increased BrdU incorporation, but not due to decreased apoptosis rates in response to cyclic pressure. In addition, significant (p < 0.05) elevation of Akt phosphorylation in SMC following exposure to cyclic pressure and lack of pressure-induced SMC hyperplasia in the presence of PI3K inhibitors, wortmannin and LY294002, indicated the involvement of the PI3K/Akt pathway in the proliferative response of SMC to cyclic pressure. We concluded that chronic exposure to intravesical pressure oscillation may be a potential trigger for bladder tissue remodeling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0090-6964
1573-9686
DOI:10.1007/s10439-007-9331-9