Use of Reactive Materials to Bind Phosphorus

Phosphorus (P) losses from agricultural soils have caused surface water quality impairment in many regions of the world, including The Netherlands. Due to the large amounts of P accumulated in Dutch soils, the generic fertilizer and manure policy will not be sufficient to reach in time the surface w...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental quality Vol. 41; no. 3; pp. 636 - 646
Main Authors Chardon, Wim J., Groenenberg, Jan E., Temminghoff, Erwin J. M., Koopmans, Gerwin F.
Format Journal Article
LanguageEnglish
Published United States The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc 01.05.2012
American Society of Agronomy
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phosphorus (P) losses from agricultural soils have caused surface water quality impairment in many regions of the world, including The Netherlands. Due to the large amounts of P accumulated in Dutch soils, the generic fertilizer and manure policy will not be sufficient to reach in time the surface water quality standards of the European Water Framework Directive. Additional measures must be considered to further reduce P enrichment of surface waters. One option is to immobilize P in soils or manure or to trap P when it moves through the landscape by using reactive materials with a large capacity to retain P. We characterized and tested two byproducts of the process of purification of deep groundwater for drinking water that could be used as reactive materials: iron sludge and iron‐coated sand. Both materials contain low amounts of inorganic contaminants, which also have a low (bio)availability, and bound a large amount of P. We could describe sorption of P to the iron sludge in batch experiments well with the kinetic Freundlich equation (Q = a × tm × Cn). Kinetics had a large influence on P sorption in batch and column experiments and should be taken into account when iron‐containing materials are tested for their capability to immobilize or trap P. A negative aspect of the iron sludge is its low hydraulic conductivity; even when mixed with pure sand to a mixture containing 20% sludge, the conductivity was very low, and only 10% sludge may be needed before application is possible in filters or barriers for removing P from groundwater. Due to its much higher hydraulic conductivity, iron‐coated sand has greater potential for use under field conditions. Immobilizing P could be an option for using iron sludge as a reactive material.
Bibliography:Supplemental data file is available online for this article.
All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0047-2425
1537-2537
DOI:10.2134/jeq2011.0055