Antitumor Activity of a Monoclonal Antibody Targeting Major Histocompatibility Complex Class I-Her2 Peptide Complexes

Applications of trastuzumab are limited to breast cancer patients with high Her2-expressing tumors. We developed a T-cell receptor mimic (TCRm) monoclonal antibody (hereafter called RL1B) that targets the Her2-E75 peptide (residues 369-377)-HLA-A2 complex and examined its effects in Her2-expressing...

Full description

Saved in:
Bibliographic Details
Published inJNCI : Journal of the National Cancer Institute Vol. 105; no. 3; pp. 202 - 218
Main Authors JAIN, Rinki, RAWAT, Amit, VERMA, Bhavna, MARKIEWSKI, Maciej M, WEIDANZ, Jon A
Format Journal Article
LanguageEnglish
Published Cary, NC Oxford University Press 06.02.2013
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Applications of trastuzumab are limited to breast cancer patients with high Her2-expressing tumors. We developed a T-cell receptor mimic (TCRm) monoclonal antibody (hereafter called RL1B) that targets the Her2-E75 peptide (residues 369-377)-HLA-A2 complex and examined its effects in Her2-expressing cancer cells. RL1B binding affinity was determined by surface plasmon resonance and specificity was demonstrated using Her2 antigen-positive and negative tumor cell lines. Immunohistochemistry was used to assess binding to frozen sections of human carcinomas (n = 3). Antitumor activity mediated by RL1B and trastuzumab against Her2(+) tumor cell lines was evaluated using the WST-1 cell viability assay and caspase-3 and poly(ADP-ribose) polymerase cleavage assays. A xenograft mouse model (n = 6 per group) was used to assess RL1B antitumor activity. Mechanisms of RL1B-mediated cytotoxicity were evaluated with confocal microscopy, flow cytometry, and histology. All statistical tests were two-sided. RL1B bound with high specificity and affinity to the E75 peptide-HLA-A2 complex in all Her2(+) and HLA-A2(+) cancer cell lines and human carcinomas. Compared with control antibody, RL1B suppressed growth of low Her2-expressing breast tumors in mice (mean volume, RL1B vs control = 241 mm(3) vs 1531 mm(3); P = .0109) and statistically significantly increased mouse survival (P = .0098). It reduced viability compared to control monoclonal antibody-treated cells and statistically significantly increased caspase 3 activation of all Her2(+) carcinoma cell lines tested, whereas trastuzumab induced apoptosis only in high Her2-expressing cancer cells. Mechanisms of RL1B cytotoxicity were associated with antibody internalization and intracellular signaling. The TCRm RL1B could be a new approach to immunotherapy of Her2-expressing malignancies.
ISSN:0027-8874
1460-2105
DOI:10.1093/jnci/djs521