Mutant firefly luciferase enzymes resistant to the inhibition by sodium chloride

Objectives Firefly luciferase, one of the most extensively studied enzymes, has numerous applications. However, luciferase activity is inhibited by sodium chloride. This study was aimed at obtaining mutant luciferase enzymes resistant to the sodium chloride inhibition. Results We first obtained two...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology letters Vol. 43; no. 8; pp. 1585 - 1594
Main Authors Yawata, Satoshi, Noda, Kenichi, Shimomura, Ai, Kuroda, Akio
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.08.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objectives Firefly luciferase, one of the most extensively studied enzymes, has numerous applications. However, luciferase activity is inhibited by sodium chloride. This study was aimed at obtaining mutant luciferase enzymes resistant to the sodium chloride inhibition. Results We first obtained two mutant luciferase enzymes whose inhibition were alleviated and determined the mutations to be Val288Ile and Glu488Val. Under medical dialysis condition (140 mM sodium chloride), the wild type was inhibited to 44% of its original activity level. In contrast, the single mutants, Val288Ile and Glu488Val, retained 67% and 79% of their original activity, respectively. Next, we introduced Val288Ile and Glu488Val mutations into wild-type luciferase to create a double mutant using site-directed mutagenesis. Notably, the double mutant retained its activity more than 95% of that in the absence of sodium chloride. Conclusions The mutant luciferase, named luciferase CR, was found to retain its activity in various concentrations of sodium chloride. The luciferase CR may be extensively useful in any bioassay which includes firefly luciferase and is employed in the presence of sodium chloride.
ISSN:0141-5492
1573-6776
DOI:10.1007/s10529-021-03109-x