A bayesian approach to dynamic tobit models
This paper develops a posterior simulation method for a dynamic Tobit model. The major obstacle rooted in such a problem lies in high dimensional integrals, induced by dependence among censored observations, in the likelihood function. The primary contribution of this study is to develop a practical...
Saved in:
Published in | Econometric reviews Vol. 18; no. 4; pp. 417 - 439 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Marcel Dekker, Inc
01.01.1999
Taylor and Francis Journals |
Series | Econometric Reviews |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper develops a posterior simulation method for a dynamic Tobit model. The major obstacle rooted in such a problem lies in high dimensional integrals, induced by dependence among censored observations, in the likelihood function. The primary contribution of this study is to develop a practical and efficient sampling scheme for the conditional posterior distributions of the censored (i.e., unobserved) data, so that the Gibbs sampler with the data augmentation algorithm is successfully applied. The substantial differences between this approach and some existing methods are highlighted. The proposed simulation method is investigated by means of a Monte Carlo study and applied to a regression model of Japanese exports of passenger cars to the U.S. subject to a non-tariff trade barrier. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0747-4938 1532-4168 |
DOI: | 10.1080/07474939908800353 |