Classification of Free-Living Body Posture with ECG Patch Accelerometers: Application to the Multicenter AIDS Cohort Study

As health studies increasingly monitor free-living heart performance via ECG patches with accelerometers, researchers will seek to investigate cardio-electrical responses to physical activity and sedentary behavior, increasing demand for fast, scalable methods to process accelerometer data. We exten...

Full description

Saved in:
Bibliographic Details
Published inStatistics in biosciences Vol. 16; no. 1; pp. 25 - 44
Main Authors Etzkorn, Lacey H., Heravi, Amir S., Knuth, Nicolas D., Wu, Katherine C., Post, Wendy S., Urbanek, Jacek K., Crainiceanu, Ciprian M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As health studies increasingly monitor free-living heart performance via ECG patches with accelerometers, researchers will seek to investigate cardio-electrical responses to physical activity and sedentary behavior, increasing demand for fast, scalable methods to process accelerometer data. We extend a posture classification algorithm for accelerometers in ECG patches when researchers do not have ground-truth labels or other reference measurements (i.e., upright measurement). Men living with and without HIV in the Multicenter AIDS Cohort study wore the Zio XT® for up to 2 weeks ( n  = 1250). Our novel extensions for posture classification include (1) estimation of an upright posture for each individual without a reference upright measurement; (2) correction of the upright estimate for device removal and re-positioning using novel spherical change point detection; and (3) classification of upright and recumbent periods using a clustering and voting process rather than a simple inclination threshold used in other algorithms. As no posture labels exist in the free-living environment, we perform numerous sensitivity analyses and evaluate the algorithm against labeled data from the Towson Accelerometer Study, where participants wore accelerometers at the waist. On average, 87.1% of participants were recumbent at 4 a.m. and 15.5% were recumbent at 1 p.m. Participants were recumbent 54 min longer on weekends compared to weekdays. Performance was good in comparison to labeled data in a separate, controlled setting (accuracy = 96.0%, sensitivity = 97.5%, specificity = 95.9%). Posture may be classified in the free-living environment from accelerometers in ECG patches even without measuring a standard upright position. Furthermore, algorithms that fail to account for individuals who rotate and re-attach the accelerometer may fail in the free-living environment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1867-1764
1867-1772
DOI:10.1007/s12561-023-09377-7