Discovery and development of kibdelomycin, a new class of broad-spectrum antibiotics targeting the clinically proven bacterial type II topoisomerase

[Display omitted] Kibdelomycin is a complex novel antibiotic, discovered by applying a highly sophisticated chemical-genetic Staphylococcus aureus Fitness Test (SaFT) approach, that inhibits the clinically established bacterial targets, gyrase and topoisomerase IV. It exhibits broad-spectrum antibac...

Full description

Saved in:
Bibliographic Details
Published inBioorganic & medicinal chemistry Vol. 24; no. 24; pp. 6291 - 6297
Main Author Singh, Sheo B.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Kibdelomycin is a complex novel antibiotic, discovered by applying a highly sophisticated chemical-genetic Staphylococcus aureus Fitness Test (SaFT) approach, that inhibits the clinically established bacterial targets, gyrase and topoisomerase IV. It exhibits broad-spectrum antibacterial activity against aerobic bacteria including MRSA and Acinetobacter baumannii. It is slowly bactericidal and has a low frequency of resistance. In an anaerobic environment, it exhibits narrow-spectrum activity and inhibits the growth of gut bacteria Clostridium difficile (MIC 0.125μg/mL) without affecting the growth of commensal Gram-negative organisms particularly, Bacteroides sp. It is highly efficacious in the hamster model of C. difficile infection providing 100% protection at >6mg/kg and 80% protection at 1.56mg/kg by oral dosing without systemic exposure. X-ray co-crystal structures of kibdelomycin bound to GyrB and ParE showed a unique dual arm ‘U shaped’ multisite binding never encountered with any other gyrase inhibitors. Kibdelomycin is poised for preclinical development for C. difficile treatment, and most importantly, the co-crystal structures of kibdelomycin provide unique insight for structure-guided structure modification, which could lead to better broader-spectrum systemic antibiotic potentially covering many ESKAPE pathogens.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0968-0896
1464-3391
DOI:10.1016/j.bmc.2016.04.043