Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction
Fabricating active materials into specific macrostructures is critical in the pursuit of high electro-catalytic activity. Herein we demonstrate that a three-dimensional (3D) architecture of NiFe layered double hydroxide (NiFe-LDH) significantly reduced the onset potential, yielded high current densi...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 50; no. 49; pp. 6479 - 6482 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fabricating active materials into specific macrostructures is critical in the pursuit of high electro-catalytic activity. Herein we demonstrate that a three-dimensional (3D) architecture of NiFe layered double hydroxide (NiFe-LDH) significantly reduced the onset potential, yielded high current density at small overpotentials, and showed outstanding stability in electrochemical oxygen evolution reaction. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1359-7345 1364-548X 1364-548X |
DOI: | 10.1039/C4CC01625D |