Induction of rapid and reversible cytokeratin filament network remodeling by inhibition of tyrosine phosphatases

The cytokeratin filament network is intrinsically dynamic, continuously exchanging subunits over its entire surface, while conferring structural stability on epithelial cells. However, it is not known how cytokeratin filaments are remodeled in situations where the network is temporarily and spatiall...

Full description

Saved in:
Bibliographic Details
Published inJournal of cell science Vol. 115; no. Pt 21; pp. 4133 - 4148
Main Authors Strnad, Pavel, Windoffer, Reinhard, Leube, Rudolf E
Format Journal Article
LanguageEnglish
Published England 01.11.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The cytokeratin filament network is intrinsically dynamic, continuously exchanging subunits over its entire surface, while conferring structural stability on epithelial cells. However, it is not known how cytokeratin filaments are remodeled in situations where the network is temporarily and spatially restricted. Using the tyrosine phosphatase inhibitor orthovanadate we observed rapid and reversible restructuring in living cells, which may provide the basis for such dynamics. By examining cells stably expressing fluorescent cytokeratin chimeras, we found that cytokeratin filaments were broken down and then formed into granular aggregates within a few minutes of orthovanadate addition. After drug removal, gradual reincorporation of granules into the filament network was observed for aggregates that were either part of residual filaments or stayed in close apposition to remaining filaments. Even when cytokeratin filaments were no longer detectable, granules with low mobility were still able to reestablish a cytokeratin filament network. This process took less than 30 minutes and occurred at multiple foci throughout the cytoplasm without apparent correlation to alterations in the actin- and tubulin-based systems. Interestingly, the short-lived and rather small orthovanadate-induced cytokeratin granules contained the cytoskeletal crosslinker plectin but lacked the cytokeratin-solubilising 14-3-3 proteins. By contrast, the long-lived and larger cytokeratin aggregates generated after treatment with the serine/threonine phosphatase inhibitor okadaic acid were negative for plectin but positive for 14-3-3 proteins. Taken together, our observations in living orthovanadate-treated interphase cells revealed modes of cytokeratin remodeling that qualify as basic mechanisms capable of rapidly adapting the cytokeratin filament cytoskeleton to specific requirements.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.00096