A combined transient in situ FTIR and flow reactor study of NOx storage and reduction over M/BaCO3/Al2O3 (M = Pt, Pd or Rh) catalysts

Transient in situ DRIFTS and flow-reactor experiments were performed to study the storage and reduction of NOX over Pt/BaCO3/Al2O3, Pd/BaCO3/Al2O3, and Rh/BaCO3/Al2O3 samples using CO, H-2, C3H6, or C3H8 as the reducing agent. The DRIFTS results show that exposure of the examined samples to NO2 resu...

Full description

Saved in:
Bibliographic Details
Published inJournal of catalysis Vol. 244; no. 2; pp. 169 - 182
Main Authors ABDULHAMID, Hussam, DAWODY, Jazaer, FRIDELL, Erik, SKOGLUNDH, Magnus
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier 10.12.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transient in situ DRIFTS and flow-reactor experiments were performed to study the storage and reduction of NOX over Pt/BaCO3/Al2O3, Pd/BaCO3/Al2O3, and Rh/BaCO3/Al2O3 samples using CO, H-2, C3H6, or C3H8 as the reducing agent. The DRIFTS results show that exposure of the examined samples to NO2 results in the formation of nitrite/nitrate peaks over alumina and barium and that the reduction of stored NOX is influenced by the type of precious metal and reducing agent. Using CO as the reductant results in a lower NOX reduction capacity for Pt/BaCO3/Al2O3 compared with Pd- and Rh-based samples, whereas H-2 shows a significant ability to reduce the stored NOX on all samples examined. In addition, the reduction with CO and C3H6 proceeds via the formation of isocyanate species over both barium and alumina sites. The intensity of barium-isocyanate species for Pt/BaCO3/Al2O3 is significantly lower than the corresponding intensity for the Pd- and Rh-based samples, suggesting that the interaction between barium and Pt is lower than the corresponding interaction in the Pd/BaCO3/Al2O3 and Rh/BaCO3/Al2O3 samples. (c) 2006 Elsevier Inc. All rights reserved.
ISSN:0021-9517
1090-2694
1090-2694
DOI:10.1016/j.jcat.2006.09.003