Coordinated Beamforming for MISO Interference Channel: Complexity Analysis and Efficient Algorithms

In a cellular wireless system, users located at cell edges often suffer significant out-of-cell interference. Assuming each base station is equipped with multiple antennas, we can model this scenario as a multiple-input single-output (MISO) interference channel. In this paper we consider a coordinat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 59; no. 3; pp. 1142 - 1157
Main Authors Liu, Ya-Feng, Dai, Yu-Hong, Luo, Zhi-Quan
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In a cellular wireless system, users located at cell edges often suffer significant out-of-cell interference. Assuming each base station is equipped with multiple antennas, we can model this scenario as a multiple-input single-output (MISO) interference channel. In this paper we consider a coordinated beamforming approach whereby multiple base stations jointly optimize their downlink beamforming vectors in order to simultaneously improve the data rates of a given group of cell edge users. Assuming perfect channel knowledge, we formulate this problem as the maximization of a system utility (which balances user fairness and average user rates), subject to individual power constraints at each base station. We show that, for the single-carrier case and when the number of antennas at each base station is at least two, the optimal coordinated beamforming problem is NP-hard for both the harmonic mean utility and the proportional fairness utility. For general utilities, we propose a cyclic coordinate descent algorithm, which enables each transmitter to update its beamformer locally with limited information exchange and establish its global convergence to a stationary point. We illustrate its effectiveness in computer simulations by using the space matched beamformer as the benchmark.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2010.2092772