Directional Growth of Tin Crystals Controlled by Combined Solute Concentration Gradient Field and Static Magnetic Field

A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid (Pb)/ liquid (Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relati...

Full description

Saved in:
Bibliographic Details
Published inActa metallurgica sinica : English letters Vol. 28; no. 6; pp. 725 - 732
Main Authors Li, Lei, Xu, Bo, Tong, Wei-Ping, Zhang, Hui, Ban, Chun-Yan, He, Li-Zi, Zhao, Zhi-Hao, Zuo, Yu-Bo, Zhu, Qing-Feng, Cui, Jian-Zhong
Format Journal Article
LanguageEnglish
Published Beijing The Chinese Society for Metals 01.06.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid (Pb)/ liquid (Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field (〈0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level (0.8-5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.
Bibliography:A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid (Pb)/ liquid (Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field (〈0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level (0.8-5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.
21-1361/TG
Microstructural evolution; Crystallization behavior; Dendrite growth; Diffusion behavior;Magnetic field; Solidification pattern
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1006-7191
2194-1289
DOI:10.1007/s40195-015-0253-5