Translating mRNAs strongly correlate to proteins in a multivariate manner and their translation ratios are phenotype specific

As a well-known phenomenon, total mRNAs poorly correlate to proteins in their abundances as reported. Recent findings calculated with bivariate models suggested even poorer such correlation, whereas focusing on the translating mRNAs (ribosome nascent-chain complex-bound mRNAs, RNC-mRNAs) subset. In...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 41; no. 9; pp. 4743 - 4754
Main Authors Wang, Tong, Cui, Yizhi, Jin, Jingjie, Guo, Jiahui, Wang, Guibin, Yin, Xingfeng, He, Qing-Yu, Zhang, Gong
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.05.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As a well-known phenomenon, total mRNAs poorly correlate to proteins in their abundances as reported. Recent findings calculated with bivariate models suggested even poorer such correlation, whereas focusing on the translating mRNAs (ribosome nascent-chain complex-bound mRNAs, RNC-mRNAs) subset. In this study, we analysed the relative abundances of mRNAs, RNC-mRNAs and proteins on genome-wide scale, comparing human lung cancer A549 and H1299 cells with normal human bronchial epithelial (HBE) cells, respectively. As discovered, a strong correlation between RNC-mRNAs and proteins in their relative abundances could be established through a multivariate linear model by integrating the mRNA length as a key factor. The R(2) reached 0.94 and 0.97 in A549 versus HBE and H1299 versus HBE comparisons, respectively. This correlation highlighted that the mRNA length significantly contributes to the translational modulation, especially to the translational initiation, favoured by its correlation with the mRNA translation ratio (TR) as observed. We found TR is highly phenotype specific, which was substantiated by both pathway analysis and biased TRs of the splice variants of BDP1 gene, which is a key transcription factor of transfer RNAs. These findings revealed, for the first time, the intrinsic and genome-wide translation modulations at translatomic level in human cells at steady-state, which are tightly correlated to the protein abundance and functionally relevant to cellular phenotypes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors wish it to be known that, in their opinion, the first three authors should be regarded as joint First Authors.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkt178