On Distributed Convex Optimization Under Inequality and Equality Constraints

We consider a general multi-agent convex optimization problem where the agents are to collectively minimize a global objective function subject to a global inequality constraint, a global equality constraint, and a global constraint set. The objective function is defined by a sum of local objective...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 57; no. 1; pp. 151 - 164
Main Authors Minghui Zhu, Martinez, S.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider a general multi-agent convex optimization problem where the agents are to collectively minimize a global objective function subject to a global inequality constraint, a global equality constraint, and a global constraint set. The objective function is defined by a sum of local objective functions, while the global constraint set is produced by the intersection of local constraint sets. In particular, we study two cases: one where the equality constraint is absent, and the other where the local constraint sets are identical. We devise two distributed primal-dual subgradient algorithms based on the characterization of the primal-dual optimal solutions as the saddle points of the Lagrangian and penalty functions. These algorithms can be implemented over networks with dynamically changing topologies but satisfying a standard connectivity property, and allow the agents to asymptotically agree on optimal solutions and optimal values of the optimization problem under the Slater's condition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2011.2167817