Soluble recombinant human thrombomodulin suppresses inflammation-induced gastrointestinal tumor growth in a murine peritonitis model

Regulatory T cells (Tregs) and transforming growth factor β (TGF-β) are believed to play key roles in both postoperative pro-inflammatory and anti-inflammatory responses of malignancies. Recombinant human thrombomodulin (rTM) is implied to inhibit the interaction between TGF-β and Tregs. The aim of...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular biochemistry Vol. 475; no. 1-2; pp. 195 - 203
Main Authors AMADA, En, Fukuda, Kazumasa, Kumagai, Koshi, Kawakubo, Hirofumi, Kitagawa, Yuko
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Regulatory T cells (Tregs) and transforming growth factor β (TGF-β) are believed to play key roles in both postoperative pro-inflammatory and anti-inflammatory responses of malignancies. Recombinant human thrombomodulin (rTM) is implied to inhibit the interaction between TGF-β and Tregs. The aim of this study is to evaluate the antitumor effects of rTM against gastrointestinal tumors under systemic inflammation. Mice were subjected to cecal ligation and puncture and percutaneous allogeneic tumor implantation. rTM were introduced by percutaneous injection into the abdominal cavity. The effects of rTM were evaluated by weight of implanted tumor, proportion of Tregs in peripheral blood lymphocytes (PBL) and tumor infiltrating lymphocytes (TIL) and temporal evaluation of serum cytokines. The effect of rTM was also evaluated on the in vitro differentiation of naïve T cells into induced Tregs induced by TGF-β and interleukin (IL) -2. rTM significantly inhibited the proliferation of the implanted tumor cells in an inflammation-dependent manner. rTM also reduced the fractions of regulatory T cells and induced regulatory T cells among both PBL and TIL. Temporal evaluation of serum cytokine levels in the model mice showed that rTM significantly suppressed the increases in the serum levels of IL-2 and TGF-β. An in vitro differentiation assay revealed that rTM inhibited the differentiation of naïve T cells into Tregs triggered by IL-2- and TGF-β. rTM has suppressive effects on inflammation-induced gastrointestinal tumor growth by suggestively affecting differentiation of Tregs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0300-8177
1573-4919
DOI:10.1007/s11010-020-03872-x