Marine radar ocean wave retrieval’s dependency on range and azimuth

The strength of the surface wave signal in marine X-band radar (MR) images strongly depends on range and azimuth (i.e., the angle between antenna look and peak wave direction). Traditionally, MR wave analysis is carried out in a set of rectangular windows covering the radar field of view (FOV). The...

Full description

Saved in:
Bibliographic Details
Published inOcean dynamics Vol. 64; no. 7; pp. 999 - 1018
Main Authors Lund, Björn, Collins, Clarence O., Graber, Hans C., Terrill, Eric, Herbers, Thomas H. C.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2014
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The strength of the surface wave signal in marine X-band radar (MR) images strongly depends on range and azimuth (i.e., the angle between antenna look and peak wave direction). Traditionally, MR wave analysis is carried out in a set of rectangular windows covering the radar field of view (FOV). The FOV is typically partially obstructed, e.g., due to the coastline or ship superstructures. Especially for ships that are subject to regular course changes, this results in an increased variability or error associated with wave parameters. Using MR measurements from R/P FLIP, acquired off California during the 2010 US Office of Naval Research (ONR) high resolution air–sea interaction (Hi-Res) experiment, this study quantifies the dependency of the radar-based 2D wave spectrum and parameters on range and azimuth. With the help of reference data from a nearby Datawell Waverider buoy, we propose empirical methods to remove the dependency and we illustrate their efficacy.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1616-7341
1616-7228
DOI:10.1007/s10236-014-0725-6