The role of miR-433-3p in vascular calcification in type 2 diabetic patients: targeting WNT/β-Catenin and RANKL/RANK/OPG signaling pathways

Background Vascular calcification (VC) is a major predictor of cardiovascular diseases that represent the principal cause of mortality among type-2 diabetic patients. Accumulating data suggest the vital role of some microRNAs on vascular calcification as an epigenetic regulator. Thus, we assessed he...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology reports Vol. 50; no. 11; pp. 9073 - 9083
Main Authors Elshamy, Amira M., Hafez, Yasser Mostafa, Safa, Mohamed A. E., Ibrahim, Hoda A., Khalfallah, Mohamed, Rizk, Fatma H., Eltabaa, Eman F., Ghafar, Muhammad T. Abdel, Atef, Marwa Mohamed
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background Vascular calcification (VC) is a major predictor of cardiovascular diseases that represent the principal cause of mortality among type-2 diabetic patients. Accumulating data suggest the vital role of some microRNAs on vascular calcification as an epigenetic regulator. Thus, we assessed herein, the role of serum miR-433-3p in vascular calcification in type-2 diabetic patients. Methods Twenty healthy subjects (control group) and forty diabetic patients (20 without VC and 20 with VC) were involved in the study. miR-433-3p gene expression was measured. Runx2, Dickkopf-1 (DKK1), β-catenin, Receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) levels in serum were assessed by ELISA technique. Results Diabetes patients had significantly lower levels of miR-433-3p expression in comparison to the control group, with the lowest levels being found in diabetic patients with VC. Furthermore, Runx2, β-catenin, and RANKL levels were significantly increased with concomitant lower DKK1 and OPG levels detected in the two diabetic groups especially those with VC. Conclusion Collectively, the study documented that down-regulation of miR-433-3p may contribute to the development of VC through activating WNT/β-Catenin and RANKL/RANK/OPG signaling pathways.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0301-4851
1573-4978
DOI:10.1007/s11033-023-08792-9