Data-based adaptive online prediction model for plant-wide production indices
A data-based adaptive online prediction model is proposed for plant-wide production indices based on support vector regression, a general method which we customized specifically to model very large data sets that are generated dynamically and periodically. The proposed model can update its parameter...
Saved in:
Published in | Knowledge and information systems Vol. 41; no. 2; pp. 401 - 421 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.11.2014
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A data-based adaptive online prediction model is proposed for plant-wide production indices based on support vector regression, a general method which we customized specifically to model very large data sets that are generated dynamically and periodically. The proposed model can update its parameters online according to the statistical properties of the training samples. Further, in order to improve the prediction precision, each sample is weighted with a dynamic penalty factor that considers the effect of each sample on the prediction model accuracy. Moreover, a customized procedure is introduced to handle large training sets. After having been convincingly evaluated on benchmark data, effectiveness and performance of our approach for plant-wide production indices is demonstrated using industrial data from an operating ore dressing plant over a range of scale in training data set size. The higher accuracy and shorter computation times than existing methods suggest that it may prove advantageous in actual application to dynamic production processes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0219-1377 0219-3116 |
DOI: | 10.1007/s10115-014-0757-8 |