Effect of Electrochemical Aryl Diazonium Salt Modification on Interfacial Properties of CF/PEEK Composites

The interfacial properties between carbon fiber (CF) and thermoplastic resin are relatively weak, which can be problematic for composites in structural applications. Improving the surface roughness of CF is regarded as an effective way to enhance the interface of composites. However, most CF modifyi...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 17; no. 12; p. 2899
Main Authors Sun, Mingchen, Li, Xuekuan, Liu, Hansong, Huang, Chengyu, Wang, Kai, Zhao, Yan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 13.06.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The interfacial properties between carbon fiber (CF) and thermoplastic resin are relatively weak, which can be problematic for composites in structural applications. Improving the surface roughness of CF is regarded as an effective way to enhance the interface of composites. However, most CF modifying methods are complex and time-consuming, which cannot meet the demand for industrial production. Therefore, it is of great significance to research a fast technique of CF surface modification to strengthen the interface of composites. Herein, a one-pot reaction based on the aryl diazonium salt modification was applied to enhance the interface between CF and poly ether ether ketone (PEEK) resin. Carbon nanotubes (CNTs) were linked to CF by p-phenylenediamine (PPD) via cyclic voltammetry (CV). The surface morphology, chemical characteristics and surface energy of modified CF illustrated the effectiveness of this method, and the interfacial properties of as-prepared modified CF/PEEK demonstrated the increased tendency. All the CF was treated within 5 min and the interfacial shear strength (IFSS) of CF/PEEK was increased to the maximum of 99.62 MPa by aryl diazonium salt modification. This work may shed some light on the industrialized application of CF reinforced high-performance engineering thermoplastic composites.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17122899