Imputation of sensory properties using deep learning

Predicting the sensory properties of compounds is challenging due to the subjective nature of the experimental measurements. This testing relies on a panel of human participants and is therefore also expensive and time-consuming. We describe the application of a state-of-the-art deep learning method...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer-aided molecular design Vol. 35; no. 11; pp. 1125 - 1140
Main Authors Mahmoud, Samar, Irwin, Benedict, Chekmarev, Dmitriy, Vyas, Shyam, Kattas, Jeff, Whitehead, Thomas, Mansley, Tamsin, Bikker, Jack, Conduit, Gareth, Segall, Matthew
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Predicting the sensory properties of compounds is challenging due to the subjective nature of the experimental measurements. This testing relies on a panel of human participants and is therefore also expensive and time-consuming. We describe the application of a state-of-the-art deep learning method, Alchemite™, to the imputation of sparse physicochemical and sensory data and compare the results with conventional quantitative structure–activity relationship methods and a multi-target graph convolutional neural network. The imputation model achieved a substantially higher accuracy of prediction, with improvements in R 2 between 0.26 and 0.45 over the next best method for each sensory property. We also demonstrate that robust uncertainty estimates generated by the imputation model enable the most accurate predictions to be identified and that imputation also more accurately predicts activity cliffs, where small changes in compound structure result in large changes in sensory properties. In combination, these results demonstrate that the use of imputation, based on data from less expensive, early experiments, enables better selection of compounds for more costly studies, saving experimental time and resources.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0920-654X
1573-4951
DOI:10.1007/s10822-021-00424-3