The Effects of Irradiation on the Improvement in Oxidation Behavior of MX-ODS Steel in Liquid Pb
Lead-cooled fast reactors exhibit strong inherent safety performance and good economic features, while material degradation due to corrosion and irradiation is still challenging. Oxide dispersion-strengthened steels are one of the promising candidates for fuel cladding materials. The effects of both...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 14; no. 9; p. 798 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Lead-cooled fast reactors exhibit strong inherent safety performance and good economic features, while material degradation due to corrosion and irradiation is still challenging. Oxide dispersion-strengthened steels are one of the promising candidates for fuel cladding materials. The effects of both irradiation and corrosion on ODS steel need to be further studied. In this work, MX-ODS steel was irradiated by Fe ions at 500 °C up to 46 dpa. Later, the as-received specimen and the irradiated specimen were used to conduct corrosion tests in oxygen-saturated Pb at 550 °C for 1 h. In the as-received specimen, discontinuous oxides penetrated by Pb and Pb in contact with steel matrix were observed, demonstrating unsatisfactory corrosion resistance of the material. However, in the irradiated specimen after corrosion experiment, a protective oxide layer formed and prevented Pb attack. The oxidation behavior differences between the two specimens can be attributed to the defects produced by irradiation and the structural discrepancy in oxides caused by the formation process. A possible mechanism of irradiation on the corrosion is discussed. In the as-received specimen, Fe atoms loss led to voids in the oxides, and lead penetrated the oxides through these voids. In the irradiated specimen, defects left by previous irradiation helped to form a more uniform oxide layer. The adhesive outer magnetite oxide and the Fe ions generated from where grain boundary oxidation developed retarded the presence of voids and made the oxide layer protective. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano14090798 |