Asynchronous Control for Discrete-Time Hidden Markov Jump Power Systems

In this article, the stabilization problem of discrete-time power systems subject to random abrupt changes is studied via asynchronous control. In this regard, the transient faults in the power lines, and subsequent switching of associated circuit breakers are modeled as a Markov chain. Based on thi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 9; pp. 9943 - 9948
Main Authors Kuppusamy, Subramanian, Joo, Young Hoon, Kim, Han Sol
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, the stabilization problem of discrete-time power systems subject to random abrupt changes is studied via asynchronous control. In this regard, the transient faults in the power lines, and subsequent switching of associated circuit breakers are modeled as a Markov chain. Based on this, the power systems are described as discrete-time Markov jump systems. The focus is mainly to design the control for Markov jump-based power systems (MJPSs) when modes of the control asynchronously run with the modes of power systems. To do this, a hidden Markov model technique is used to characterize the nonsynchronization between the control and system. By constructing the mode-dependent stochastic Lyapunov function, the sufficient conditions are acquired in the form of linear matrix inequalities (LMIs), which ensure not only the stochastic stability of the resulting hidden MJPSs but also the existence of the desired control. Finally, the simulation example reveals the efficiency of the designed control law.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2021.3062672