Organocatalytic Copolymerization of Mixed Type Monomers
Triggered by environmental concerns and the rising demands for metal-free polymers in e.g. bio-related and microelectronic applications, studies on organocatalytic polymerization have been launched and developed unprecedentedly during the last 15 years. A wide range of organic molecules are now avai...
Saved in:
Published in | Chinese journal of polymer science Vol. 35; no. 5; p. 581 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Chinese Chemical Society and Institute of Chemistry, CAS
01.05.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Triggered by environmental concerns and the rising demands for metal-free polymers in e.g. bio-related and microelectronic applications, studies on organocatalytic polymerization have been launched and developed unprecedentedly during the last 15 years. A wide range of organic molecules are now available in polymer chemists' toolbox to choose from as catalysts for polymerization of (hetero)cyclic and polar vinyl monomers. Apart from the intrinsic merits such as lower toxicity and better solubility compared with (transition) metal catalysts/initiators, organocatalysts have also shown, in many cases, excellence to achieve high polymerization rates and/or good control (selectivity). In addition, particular natures and catalytic/activating mechanisms of organocatalysts have led to new opportunities for rational design and efficient synthesis of macromolecular architectures, i.e. chain structures, topological structures and functionalities. This mini-review is specially themed on pathways to construct copolymer chain structures by organocatalytic copolymerization of mixed type monomers (comonomers bearing different polymerizing moieties) and will be sectioned by different comonomer combinations, including cyclic monoesters of different sizes, cyclic monoesters and lactides, cyclic esters and cyclic carbonates or epoxides, heterocycles and vinyl monomers. |
---|---|
Bibliography: | Qi-lei Song, Shuang-yan Hu, Jun-peng Zhao and Guang-zhao Zhang (Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China) Chain structure; Copolymer; Organocatalytic polymerization Triggered by environmental concerns and the rising demands for metal-free polymers in e.g. bio-related and microelectronic applications, studies on organocatalytic polymerization have been launched and developed unprecedentedly during the last 15 years. A wide range of organic molecules are now available in polymer chemists' toolbox to choose from as catalysts for polymerization of (hetero)cyclic and polar vinyl monomers. Apart from the intrinsic merits such as lower toxicity and better solubility compared with (transition) metal catalysts/initiators, organocatalysts have also shown, in many cases, excellence to achieve high polymerization rates and/or good control (selectivity). In addition, particular natures and catalytic/activating mechanisms of organocatalysts have led to new opportunities for rational design and efficient synthesis of macromolecular architectures, i.e. chain structures, topological structures and functionalities. This mini-review is specially themed on pathways to construct copolymer chain structures by organocatalytic copolymerization of mixed type monomers (comonomers bearing different polymerizing moieties) and will be sectioned by different comonomer combinations, including cyclic monoesters of different sizes, cyclic monoesters and lactides, cyclic esters and cyclic carbonates or epoxides, heterocycles and vinyl monomers. 11-2015/O6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0256-7679 1439-6203 |
DOI: | 10.1007/s10118-017-1925-6 |