Effects of dietary Pi on the renal Na+-dependent Pi transporter NaPi-2 in thyroparathyroidectomized rats

Dietary Pi and parathyroid hormone (PTH) are two most important physiological and pathophysiological regulators of Pi re-absorption in the renal proximal tubule. Effects of dietary Pi on Na+/Pi co-transporter NaPi-2 were investigated in thyroparathyroidectomized (TPTX) rats. NaPi-2 protein and mRNA...

Full description

Saved in:
Bibliographic Details
Published inBiochemical journal Vol. 333 ( Pt 1); no. 1; pp. 175 - 181
Main Authors Takahashi, F, Morita, K, Katai, K, Segawa, H, Fujioka, A, Kouda, T, Tatsumi, S, Nii, T, Taketani, Y, Haga, H, Hisano, S, Fukui, Y, Miyamoto, K I, Takeda, E
Format Journal Article
LanguageEnglish
Published England 01.07.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Dietary Pi and parathyroid hormone (PTH) are two most important physiological and pathophysiological regulators of Pi re-absorption in the renal proximal tubule. Effects of dietary Pi on Na+/Pi co-transporter NaPi-2 were investigated in thyroparathyroidectomized (TPTX) rats. NaPi-2 protein and mRNA in the kidney cortex of TPTX rats were increased approximately 3.8- and 2.4-fold in amount respectively compared with those in the sham-operated animals. Administration of PTH to the TPTX rats resulted in a decrease in the amount of NaPi-2 protein, but not in the abundance of NaPi-2 mRNA. Deprivation of dietary Pi in the TPTX rats did not affect the amount of NaPi-2 mRNA and protein. In the Pi-deprived TPTX rats, feeding of a high-Pi diet resulted in marked decreases in Pi transport activity and the amount of NaPi-2 protein in the superficial nephrons. Immunohistochemical analysis demonstrated that administration of PTH to TPTX rats resulted in a decrease in NaPi-2 immunoreactivity from both superficial and juxtamedullary nephrons within 4 h. Switching TPTX animals from a low-Pi diet to the high-Pi diet decreased NaPi-2 immunoreactivity from superficial nephrons, but not from juxtamedullary nephrons, within 4 h. These results suggest that dietary Pi could regulate the amount of NaPi-2 protein in the superficial nephrons in a PTH-independent manner.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3330175