In vivo high-resolution synchrotron radiation imaging of collagen-induced arthritis in a rodent model

In vivo microstructures of the affected feet of collagen‐induced arthritic (CIA) mice were examined using a high‐resolution synchrotron radiation (SR) X‐ray refraction technique with a polychromatic beam issued from a bending magnet. The CIA models were obtained from six‐week‐old DBA/1J mice that we...

Full description

Saved in:
Bibliographic Details
Published inJournal of synchrotron radiation Vol. 17; no. 3; pp. 393 - 399
Main Authors Choi, Chang-Hyuk, Kim, Hong-Tae, Choe, Jung-Yoon, Kim, Seong-Kyu, Choi, Gi-Whan, Jheon, SangHoon, Kim, Jong-Ki
Format Journal Article
LanguageEnglish
Published 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.05.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In vivo microstructures of the affected feet of collagen‐induced arthritic (CIA) mice were examined using a high‐resolution synchrotron radiation (SR) X‐ray refraction technique with a polychromatic beam issued from a bending magnet. The CIA models were obtained from six‐week‐old DBA/1J mice that were immunized with bovine type II collagen and grouped as grades 0–3 according to a clinical scoring for the severity of arthritis. An X‐ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens before being captured with a digital charge‐coupled‐device camera. Various changes in the joint microstructure, including cartilage destruction, periosteal born formation, articular bone thinning and erosion, marrow invasion by pannus progression, and widening joint space, were clearly identified at each level of arthritis severity with an equivalent pixel size of 2.7 µm. These high‐resolution features of destruction in the CIA models have not previously been available from any other conventional imaging modalities except histological light microscopy. However, thickening of the synovial membrane was not resolved in composite images by the SR refraction imaging method. In conclusion, in vivo SR X‐ray microscopic imaging may have potential as a diagnostic tool in small animals that does not require a histochemical preparation stage in examining microstructural changes in joints affected with arthritis. The findings from the SR images are comparable with standard histopathology findings.
Bibliography:ArticleID:JSYHF5170
ark:/67375/WNG-WQ8KXX6T-7
istex:48FD19951DD8B78D14DD5187F64DF34E60C0B2C8
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1600-5775
0909-0495
1600-5775
DOI:10.1107/S0909049510009581