Bolting multicenter solutions

A bstract We introduce a solvable system of equations that describes non-extremal multicenter solutions to six-dimensional ungauged supergravity coupled to tensor multiplets. The system involves a set of functions on a three-dimensional base metric. We obtain a family of non-extremal axisymmetric so...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2017; no. 1; pp. 1 - 33
Main Authors Bena, Iosif, Bossard, Guillaume, Katmadas, Stefanos, Turton, David
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2017
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A bstract We introduce a solvable system of equations that describes non-extremal multicenter solutions to six-dimensional ungauged supergravity coupled to tensor multiplets. The system involves a set of functions on a three-dimensional base metric. We obtain a family of non-extremal axisymmetric solutions that generalize the known multicenter extremal solutions, using a particular base metric that introduces a bolt. We analyze the conditions for regularity, and in doing so we show that this family does not include solutions that contain an extremal black hole and a smooth bolt. We determine the constraints that are necessary to obtain smooth horizonless solutions involving a bolt and an arbitrary number of Gibbons-Hawking centers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1029-8479
1126-6708
1029-8479
DOI:10.1007/JHEP01(2017)127