MRS study of meningeal hemangiopericytoma and edema: A comparison with meningothelial meningioma
Intracranial hemangiopericytomas (HPCs) are rare tumors and their radiological appearance resembles that of meningiomas, especially meningothelial meningiomas. To increase the knowledge on the biochemical composition of this type of tumor for better diagnosis and prognosis, we performed a molecular...
Saved in:
Published in | Oncology reports Vol. 28; no. 4; pp. 1461 - 1467 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Athens
D.A. Spandidos
01.10.2012
Spandidos Spandidos Publications UK Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Intracranial hemangiopericytomas (HPCs) are rare tumors and their radiological appearance resembles that of meningiomas, especially meningothelial meningiomas. To increase the knowledge on the biochemical composition of this type of tumor for better diagnosis and prognosis, we performed a molecular study using ex vivo high resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) perfomed on HPC and peritumoral edematous tissues. Moreover, to help in the discrimination between HPC and meningothelial meningioma we compared the ex vivo HR-MAS spectra of samples from one patient with HPC and 5 patients affected by meningothelial meningioma. Magnetic resonance imaging (MRI), in vivo localized single voxel 1H-MRS was also performed on the same patients prior to surgery and the in vivo and ex vivo MRS spectra were compared. We observed the presence of OH-butyrate, together with glucose in HPC and a low amount of N-acetylaspartate in the edema, that may reflect neuronal alteration responsible for associated epilepsy. Many differences between HPC and meningothelial meningioma were identified. The relative ratios of myo-inositol, glucose and gluthatione with respect to glutamate are higher in HPC compared to meningioma; whereas the relative ratios of creatine, glutamine, alanine, glycine and choline-containing compounds with respect to glutamate are lower in HPC compared to meningioma. These data will be useful to improve the interpretation of in vivo MRS spectra resulting in a more accurate diagnosis of these rare tumors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1021-335X 1791-2431 |
DOI: | 10.3892/or.2012.1919 |