Control and Entropy Analysis of Tip Leakage Flow for Compressor Cascade under Different Clearance Sizes with Endwall Suction

To investigate the influence of the change of tip clearance size on the control effect of the endwall suction, the effects of endwall suction on the aerodynamic performance of the axial compressor cascade were studied numerically. Three tip clearance sizes of 0.5% h, 1.0% h, and 2.0% h (h is the bla...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 22; no. 2; p. 128
Main Authors Zhang, Botao, Liu, Bo, Han, Changfu, Zhao, Hang
Format Journal Article
LanguageEnglish
Published MDPI 21.01.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To investigate the influence of the change of tip clearance size on the control effect of the endwall suction, the effects of endwall suction on the aerodynamic performance of the axial compressor cascade were studied numerically. Three tip clearance sizes of 0.5% h, 1.0% h, and 2.0% h (h is the blade height) were mainly considered. The results show that the endwall suction scheme whose coverage range was 8–33% axial chord can reduce the leakage flow and improve the aerodynamic performance by directly influencing the structure of tip leakage vortex. The overall total pressure loss coefficients of the three clearance size schemes at 0° angle of incidence with 0.4 inlet Mach number are reduced by about 10.3%, 10.8%, and 6.0%, respectively, at the suction flow rate of 0.7%. Under the same suction flow rate, the onset position of the tip leakage vortex of the cascade with small clearance is shifted from the 15% of the axial chord length of original to the 48% of the axial chord length, which with large clearance is nearly no changed. The leakage flow rate and the distance from the leakage vortex to the suction slot are the main reasons for the different control effect of the endwall suction under different tip clearance sizes. The difference of the spanwise distribution of flow field parameters may also cause the difference of flow control effect.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e22020128