Synthesis, field-emission and electric properties of metastable phase VO2 (A) ultra-long nanobelts

High quality single crystalline metastable phase VO(2) (A) ultra-long nanobelts were synthesized by hydrothermal method using inorganic V(2)O(5) sol as precursor and polyethylene glycol (PEG) as both surfactant and reducing agent. It was found that the oriented attach growth mechanism is responsible...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 40; no. 41; pp. 10961 - 10965
Main Authors Li, Ming, Kong, Fengyu, Li, Liang, Zhang, Yunxia, Chen, Li, Yan, Weiwei, Li, Guanghai
Format Journal Article
LanguageEnglish
Published England 01.01.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High quality single crystalline metastable phase VO(2) (A) ultra-long nanobelts were synthesized by hydrothermal method using inorganic V(2)O(5) sol as precursor and polyethylene glycol (PEG) as both surfactant and reducing agent. It was found that the oriented attach growth mechanism is responsible for the formation of VO(2) (A) nanobelts. In addition to an endothermic peak, an unusual exothermic peak was detected in DSC curve of the nanobelts. The temperature dependence of the lattice parameters have been studied, and it was found that the a-axis expands while the c-axis contracts in the high-temperature XRD test. The VO(2) (A) nanobelt has a low turn-on field of 3.8 V μm(-1) and a high field enhancement factor of 1739 in the field emission measurement. Electrical transport measurement of a single VO(2) (A) nanobelt gives a relative low hoping activation energy of 0.28 eV.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1477-9226
1477-9234
DOI:10.1039/c1dt10941c