Stereo Cloud Heights From Multispectral IR Imagery via Region-of-Interest Segmentation

Multispectral thermal imagery acquired from low Earth orbit was used to develop a method of cloud-height determination that applies image brightness temperature histograms and region-of-interest (ROI) image segmentation as a processing step prior to stereo-height retrieval. The National Aeronautics...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 44; no. 9; pp. 2481 - 2491
Main Authors Manizade, K.F., Spinhirne, J.D., Lancaster, R.S.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multispectral thermal imagery acquired from low Earth orbit was used to develop a method of cloud-height determination that applies image brightness temperature histograms and region-of-interest (ROI) image segmentation as a processing step prior to stereo-height retrieval. The National Aeronautics and Space Administration's Infrared Spectral Imaging Radiometer (ISIR) acquired all imagery during the August 1997 STS-85 mission of the Space Shuttle Discovery. ISIR, the first Earth-observing spectroradiometer to employ an uncooled large-format microbolometer-array focal plane, provided continuous coverage in four spectral bands along track in an 80-km-wide swath. ROI segmentation created binary cloud masks ranging over brightness temperatures in the imagery for which the parallax was determined by a two-dimensional correlation method, allowing stereo heights to be determined using the standard parallax equations. A subpixel parallax algorithm allowed stereo heights to be determined with a precision of roughly plusmn0.39 km for clouds in the observed altitude range of 0.5-10 km
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2006.873339