Investigation of protein binding affinity in multimodal chromatographic systems using a homologous protein library

A library of cold shock protein B mutant variants was employed to examine differences in protein binding behavior in ion exchange and multimodal chromatography. Single site mutations introduced at charged amino acids on the protein surface resulted in a homologous protein set with varying charge den...

Full description

Saved in:
Bibliographic Details
Published inJournal of Chromatography A Vol. 1217; no. 2; pp. 191 - 198
Main Authors Chung, Wai Keen, Hou, Ying, Holstein, Melissa, Freed, Alexander, Makhatadze, George I., Cramer, Steven M.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 08.01.2010
Amsterdam; New York: Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A library of cold shock protein B mutant variants was employed to examine differences in protein binding behavior in ion exchange and multimodal chromatography. Single site mutations introduced at charged amino acids on the protein surface resulted in a homologous protein set with varying charge density and distribution. The retention times of the mutants varied significantly during linear gradient chromatography in both systems. The majority of the proteins were more strongly retained on the multimodal cation exchange resin as compared to the traditional cation exchanger. Further, the elution order of the mutants on the multimodal resin was different from that obtained with the ion exchanger. Quantitative structure–property relationship models generated using a support vector regression technique were shown to provide good predictions for the retention times of protein mutants on the multimodal resin. A coarse-grained ligand docking package was employed to examine the various interactions between the proteins and ligands in free solution. The multimodal ligand was shown to utilize multiple interaction types to achieve stronger retention on the protein surface. The use of this protein library in concert with the qualitative and quantitative analyses presented in this paper provides an improved understanding of protein behavior in multimodal chromatographic systems.
Bibliography:http://dx.doi.org/10.1016/j.chroma.2009.08.005
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9673
1873-3778
DOI:10.1016/j.chroma.2009.08.005